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These lecture notes touch upon aspects of out of equilibbahaviour in topo-
logically ordered systems, broadly interpreted. It shdaddhoted that the selection of
topics reflects a personal choice and it is not intended astarsgtic review. Hope-
fully, these notes will stimulate the appetite of the ingteel reader to pursue further
study in this area of research.

1 Topological order, broadly interpreted

Firstly, one should point out that these lectures do not aiintroduce nor adhere to
a specific and accurate definition wipological order Other lectures in this school
may serve the purpose. Here, “topologically ordered systaafer very loosely to
systems that do not develop a local order parameter at lopedeature (e.g., symmetry
breaking) and yet exhibit non-trivial global properties.

Within this broad definition, which encompasses classitatistical mechanical
systems as well as quantum mechanical systems, we shaliojpék®gically ordered
systems to be characterised by the following properties:

1. the lack of a local order parameter characterising thetemperature phase;
rather, these system remain in a disordered ‘liquid’ stath non-trivial non-
local correlations;

2. the collective excitations of the low temperature phake the form of point-like
guasiparticles that carry a fraction of the microscopicrdeg of freedom in the
system.

Itis often the case that the low temperature phase can batieffly interpreted as a
specialvacuum capable of hosting the emergent collective excitatioriselementary
particles



The properties of the emergent excitations and those of dlceum are closely
related. From a dynamical perspective, the vacuum detesriioth at the local as
well as global (topological) level the rules of motion of tecitations. Vice versa, as
the quasiparticles move across the system, they changaétedcitations act indeed
as dynamical facilitators, as it is through their motionttthee system can respond to
external perturbations and/or relax to equilibrium.

The close interplay between excitations and their vacuusfté respon-|
sible for non-trivial and interesting dynamical propestién particular
when the system is driven out of equilibrium. This is a rictd amter-
esting regime, controlled by the interplay of many (oftedependently
tuneable) factors, such as the interactions between thegemteguasipar-
ticles; the local and global kinematic constraints impdsgthe vacuum;
as well as, in quantum mechanical systems, the mutualtgtatisf the
excitations.

For the reader who may be familiar with these models, exasrnipldude: lattice
dimer models; vertex models (e.g., the six and eight vertedats in 2D, and spin ice
in 3D); and the toric code model and Kitaev’s model.

In these lectures, we will discuss specifically the caseadsital spin ice (Sec. 2)
and the quantum toric code (Sec. 3). The combination of gtyarorrelated physics,
topological order, and far from equilibrium behaviour isxgeally a tall order. Within
classical system, we will see that one can make substamtigrgss in understand-
ing the dynamics, in particular following thermal and fieldemches, thanks to an
effective modelling of the vacuum and its emergent excaiteti At the quantum me-
chanical level, a similar modelling is not readily avaikakind the depth of our present
understanding is limited to the modelling of leading enelbbgyriers and asymptotic
behaviour. We close with the discussion of an intriguingafial that can be drawn
between the toric code Hamiltonian and a class of latticeegsys known as Kinetically
Constrained Models, which were designed to achieve thydikordered low temper-
ature phases with emergdahg relaxation time scaleSec. 3.4).

2 Examplel: (classical) spinice

In Sec.[Chalker lectureslou have seen how the behaviour of spin ice models and
materials at low temperature can be understood as a spiid fflgacuum” with an
emergent gauge symmetry (inherited from the 2in-2out locaktraint that minimises
the energy). This vacuum hosts classical fractionaliseitaions that take the form
of free magnetic charges in three dimensions, or emergeghatia monopoles. (For
a review, see for instance Refs. [21, 20].)

As a first approximation, the collective behaviour of thegstems at low tempera-
ture (Fig. 1) resembles that of a Coulomb liquid or pair plagire., a gas of positive
and negative Coulomb-interacting point charges, whichverall neutral) [18]. Such
effective description goes indeed a long way to capturedivetémperature behaviour
of spin ice, with far less effort than would otherwise be riegd by conventional theo-
retical approaches for strongly correlated magnetic systen a 3D lattice.
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Figure 1: Schematic illustration of the different temparatregimes in spin ice. The
theoretically predicted ordering transitioniat appears to be prevented in experiments
by freezing of the magnetic degrees of freedom below a tlofdsiemperaturel’y,

as evidenced e.g., by a discrepancy between field-cooledenodfield-cooled mag-
netisation. The 2in-2out spin ice regime undergoes a coatia crossover to trivial
paramagnetic behaviour aroufigl

An example can be found in the use of Debye-Huckel theorybtaio the low
temperature heat capacity of spin ice. This is discusseetaildn Ref. [18] and we
only report here a brief outline of the approach for illustra purposes. In order to
compute the heat capacity, one often looks for ways to apmate the free energy
of the system. With strongly correlated localised spings itustomary for instance
to use appropriate truncated expansions. Rather than mgpvkith the spins directly,
however, in spin ice one can choose to work with the effeafiescription in terms
of a gas of Coulomb interacting charges, focusing on theraatfi the elementary
excitations and neglecting, to a first approximation, thre2but spin background. One
can then assemble the free energy of the system in this ngudae:

F= Fchem pot + Fcharge entropy + Fel (1)

whereFunem pot iS the contribution due to the fact that emergent excitatmost energy
(chemical potential)Feharge entropy 1S the entropic contribution of distributing point
charges on a lattice; anfd, is the electrostatic (or, better, magnetostatic) contidiou

The first two terms are straightforwarfenem pot < pA, Wherep is the monopole
density and\ is their bare energy cost (i.e., their cost in a generic 2int2pin ice con-
figuration infinitely far away from any other monopolésyarge entropy X —71 Smixings
where the mixing entropy takes the usual fo$iing x —plnp — (1 — p) In(1 — p)
(for a more detailed expression accounting for positivereaghtive charges separately,
see Ref. [18]).

The third term is a tall order and an exact expression is nowkiowever, several
analytical approximations are readily available in therbture of Coulomb liquids and
charge plasmas. One of the simplest approximations goesr timel name of Debye-
Huckel theory (see e.g., Ref. [42]). It provides an anabltexpression foFy, in terms
of the ratio between the Coulomb interaction strength atewaneighbour distance,
FEun, and temperatur€ as:

2
Enn
Fox =T %z+1n(1+x)], T XA\ ——p (2)



We now have an expression for the full free enefgas a function of the monopole
densityp. All the relevant parameterg\( F,,) and the proportionality constants that
have been carefully omitted above can in fact be obtainegjppeddently from micro-
scopic details about spin ice. Therefore, by minimisatiotih wespect top one can
solve for the thermodynamic equilibrium value of the monepitensity as a function
of temperature. From the latter, one then obtains the freeggrof the system and,
using known thermodynamic relations, the heat capacitghénnon-interacting limit
F1, analytic expressions can be obtained, whereas in the Didbigkel case one has
to resort to a recursive set of equations that can be solvetncally to the desired
accuracy.

The outcome is in excellent agreement with numerical sitiaria as well as the
experimentally measured behaviour of the heat capacitheofystem at low temper-
ature [43] — far better than one can achieve with conventiapproaches for strongly
interacting localised spin systems. The Debye-Hucket@ggh also allows to obtain
further insight in the system, for instance the behaviouhefmonopole density and
their screening length.

Exercise: using the parameters in Ref. [18], computép) in the Debye-Hickel
approximation and obtain the recursive equations for theil@grium monopole den-
sity.

The benefit of a Coulomb liquid description is not limited hetmodynamic prop-
erties. It is also key to understand response and equibioratt these systems. A
generic spin in a 2in-2out background can only flip if a thdrfluetuation allows it to
overcome the energy barrier to create a monopole-antinmepgpir,A; = 2A — F,,,.
This is unlikely to happen when the temperature is apprécgballer than the barrier,
as the spin flip process takes a correspondingly long timé*/”. On the contrary,
three of the four spins next to an isolated monopole can flihaut incurring such
large energy barrier. Their reversal results in the momdpolpping from one tetra-
hedron to the next (see Fig. 2) whereby the number of monspelaains unchanged
(we disregard here the weaker energetic contribution dertg range interactions
with possible farther monopoles).

The first process can take place at a density1 — p) of sites on the lattice.
Therefore the associated time scale is: e®+/T /(1 — p) ~ ¢®+/T, at the regime of
interest of sufficiently low temperatures where- e=2/7 < 1. The second process
does notincur an energy barrier but it can only take placétoean existing monopole,
and therefore ~ 1/p ~ ¢/T. Which of the two processes dominates is determined
by the smallest of the two energy scalédsandA; = 2A — FE,,,. In known spin ice
materials,A > E,,, and spin flip via monopole hopping is exponentially prefdraé
low temperatures.

From these observations, we conclude that magnetic moesjpat as facilitators
for the spin flip dynamics in the system. Therefore, they @dsey role in the way
the system responds to external perturbations and eauigibr Typical time scales for
macroscopic response are proportional to the inversetgesfsnonopoless ~ 7,/ p,
wherer, is some characteristic single spin flip time scale. A hydradyic theory that
demonstrates this relationship for non-interacting matepis presented in Ref. [17].
This result captures well the leading order divergence ofimatic relaxation time
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Figure 2: Left panel: a generic spin reversal in 2in-2ouh$pé incurs a large energy
barrier due to the creation of a monopole-antimonopole paght panel: a monopole
acts as a spin facilitator, in that it allows three of the faeighbouring spins to flip

without such barrier. Flipping one of those spins resulth@monopole hopping to a
neighbouring tetrahedron and no energy change in the system

scales observed in AC susceptibility measurements [16, €8}rections due to the
Coulomb interactions between monopoles were investigatetkerically in Ref. [23].
(See also Refs. [25, 26, 24, 27, 28, 44, 19] for other facttagipg a role in the dy-
namical slowing down at low temperatures, and potentialigriesting open issues.)

Suggested reading: see Ref. [17] for a derivation of the linear response dynamic
in the non-interacting monopole approximation using hylyreamics of irreversible
processes.

In general, a system where point-like excitations freelyimgin three dimensions
are responsible for bulk magnetic response is bound to xmlinteresting separation
of time scales. On the one hand, monopoles are only createtdranihilated in pairs.
Therefore, monopole density relaxation processes involeropole motion over dis-
tances of the order of the average monopole-monopole separa ~ p~'/2. In a
ballistic regime where positive monopoles are driven talsaregative monopoles, the
corresponding time scale is of the ordeahonopole hops. At sufficiently high tem-
peratures and / or beyond the screening length, the monapatien is diffusive and
the time scales a&* ~ p~2/3. Finally, any changes in the bulk magnetisation and
other observables that depend on the local spin orientatienuire the monopoles to
visit a finite fraction of the spins in the systems. Therefoneaverage they have to
move across a finite fraction gf spins per monopole, corresponding to a time scale
of the order o ~ p~1.

The Coulomb liquid nature of low-temperature excitatiogeds to other unusual
features in the dynamical behaviour of driven spin ice systelose to equilibrium. For
example, response properties typical of electrolytes baesm argued to apply to spin
ice, e.g., in the form of an increase in the monopole dengibniswitching on an exter-
nal magnetic field, the analogue of the sectvidn effec{30, 13, 29] in electrolytes.
Experimental work testing this hypothesis was present8fl it no consensus has
been reached yet on the observation of a magnetic Wien effect



Suggested reading: it is insightful to revisit Onsager’s theory for electrobg
(see e.g., Ref. [29]) and translate it into the magnetic laage appropriate for spin
ice [13].

These examples illustrate the close interplay between dere of the fraction-
alised excitations in spin ice and its dynamical propertisch interplay is bound to
be reflected if not enhanced when the system is brought dyrongof equilibrium. In
the following, we shall discuss a couple of examples in sosetaild Specifically, we
shall consider sudden quenches from a high to a low monogoisity state, triggered
by either tuning the temperature or an applied magnetic.field

We mention in passing that the phase diagram of spin icediesla critical end
point in presence of a magnetic field. “Slow quenches” (centinuous variations of
the parameters as a function of time) to / across the cripicait should therefore give
rise to out-of-equilibrium scaling behaviour a la Kibtdewek, in the novel context of
a system with emergent gauge symmetry and emergent Coulueriacting quasipar-
ticles. Theoretical work investigating this possibilisydurrently under way.

2.1 Thermal quenches

One way to cause the system to evolve from a state with highopmla density to
a state with low monopole density is by lowering its tempamt Here we consider
for simplicity the case where the system is initially at iitBrtemperature (Ising para-
magnet) and it is suddenly quenched to a target (low) temyer$31]. In effective
Coulomb liquid terms, this is equivalent to quenching a plasvhere positive and
negative charges can be created (and annihilated) onlyiiis, pad each charge costs
some finite amount of energy.

Immediately after the quench, the system is strongly outgoiflérium (e.g., the
monopole density is much larger than its thermodynamicevaluthe target temper-
ature). When coupled to a thermal bath, it will relax to eifpuillm via the avail-
able dynamical processes, namely monopole motion and nobe@mtimonopole cre-
ation/annihilation.

Note the stark contrast with conventional magnets whemathkquenches are usu-
ally described in terms of domain nucleation, growth andseaing [32]. In spin ice,
it is clear that this language is unlikely the right one to erstand the evolution of
the system. Rather, we see that the language of reactifusidifi processes is more
befitting.

Whereas, monopole-antimonopole annihilation eventsidaeenergy of the sys-
tem, pair creation events face a finite energy adst Detailed balance (i.e., the re-
quirement that the dynamical processes are compatibleti@imodynamic equilib-
rium) imposes that creation is statistically suppresseh wispect to annihilation by a
Boltzmann factoexp(—Ag/T).

For the sake of the discussion below, we limit ourselvesdéatse where the target
temperature is much smaller than the pair creation energyawlexp(—A,/T") ~
0. We can thus neglect creation processes altogether. Wiithgnassumption, the
equilibrium density of monopoles at the target temperaisiig@so vanishingly small
and we shall set it to zero (recall that~ e=2/7 andA < A, < 2A, therefore



Ag > T impliesA > T andp ~ 0). The equations of motion for the monopole
density can be generically written as [15]:

0 t
WD) G s = il - (1)

Ji = _DvPi(Tv ﬁ) - MQipi(rv f)VV(’I“, t)

wherep+ andJ_ are the densities and currents of positive and negative pales,
respectivelyx is the annihilation reaction constant, and the two curremhs are due
to diffusion (constantD) and deterministic drift caused by (long range) interatgio
(mobility x, interaction potential/(r)). In spin ice systems, it is often the case that
the relevant constants can be estimated analytical orr@atdiom independent com-
parison to simulations / experiments, remarkably leavaw fo no fitting parameters
in the equations!

2.1.1 Nearest-neighbour spinice

Let us focus firstly on the case where spin-spin interactarestruncated at nearest-
neighbour distance and correspondingly the charges in thdo@b liquid language
are non-interacting((r) = 0). Incidentally, in this casé; = 2A.

Within these approximations, the dynamical processesasyistem are limited to
diffusion of non-interacting charges and monopole-antiopple annihilation events.
At mean field level (uniform system, no spatial dependerbe)diffusive part is irrel-
evant and we are left with a straightforward reaction equmti

dp

i —r p2(t). 3)

The right hand side is determined by the rate of monopolehédlation events, which
is proportional to the probability of finding a monopoleiaminopole pair in the sys-
tem (~ p?) divided by the characteristic time scale for a single aitatiion event to
take place (namely, the characteristic spin flip time segle The constank « 1/
depends on details of the underlying microscopic latticeugh a combinatorial factor
accounting for the ways to arrange two monopoles next to an¢har across a bond
of the lattice.

Exercise: provide an estimate of for spin ice on the pyrochlore lattice and com-
pare your answer with the two values provided in Ref. [31] eaygbrted in the caption
of Fig. 3.

The mean field Eq. (3), complemented by the initial condipgh= 0) = pg, can
be solved straightforwardly to find

Po
)= —— 4
p(t) = 1 " (4)
and the long time decay in the monopole density goesas The accuracy of the
mean field solution in describing the behaviour of nearestirbour spin ice depends
crucially on how uniform the initial charge distribution t® ensure that diffusion time
scales are indeed irrelevant.
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Figure 3: Monopole density evolution in nearest neighbgim $ce, after a thermal
quench froml’ = 10 Kto T' = 0 K, for system sized, = 32, 64, 128. The analytical
mean-field result Eq. (4) is shown fer= 3/27, (dashed black line) and = 9/57
(solid black line) — see Ref. [31].

Spatial variations in the initial distribution of monopsland antimonopoles can
however alter the behaviour significantly [14]. For instanif the charges are dis-
tributed entirely at random with density, then the net charge fluctuations in a volume
of linear sizel scale as\/po¢3. Given that annihilation processes conserve the local
net charge (they always remove one positive and one negatiwepole), they cannot
remove these fluctuations. After a timeufficient for monopoles to diffuse over the
length? (i.e., ¢ = v/Dt), all possible annihilation events within the volume ofesiz
will have taken place, leaving behind a numben/py¢3 of monopoles of the same
charge due to the statistical net charge fluctuation. Thsiteof leftover monopoles

scales as/pol3 /(3 = pé/Q(Dt)*g’/‘*; it decays with time more slowly than the mean
field behaviour ¢ t—1) and therefore dominates at long times. (We refer the retader
Ref. [14] for a more detailed derivation and discussion & thsult.)

However, none of this in fact applies to spin ice. As a moneprvels along a
given path across the system, it modified the underlyingisginacuum by polarising
the spins along the path. Another monopole of the same clearg®tfollow the same
path in the same direction. Equivalently, we can at mostedifivmonopoles of equal
charge across a system of linear si?ebefore the system becomes fully polarised
and no more monopoles of the same charge can travel in tha daection. This
means that the most net charge that can accumulate in a véfuofia spin ice system
is of the order’?>. The density of leftover monopoles in spin ice therefordescas
V203 = (Dt)~! rather than(Dt)~3/4, which is no longer asymptotically slower
than mean field behaviour.

These observations are confirmed by the excellent agredraemten Monte Carlo
simulations of thermal quenches in nearest neighbour spiamd the solution of the
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Figure 4: Left panel: Spin configuration of two adjacentdh&dra hosting a non-
contractible monopole-antimonopole pair. Middle panebri# Carlo simulation of
dipolar spin ice, showing the total monopole density (reéayycontractible pair den-
sity (blue), and free monopole density (magenta), follgvnthermal quench from
T = oo toT = 0.125 K, with system sizel, = 8 and Dy, TioO; parameters. Right
panel: Decay of the total monopole density in Monte Carlouations of dipolar
spin ice, following thermal quenches from infinite temperatto different finite target
temperatures (see Fig.3 in Ref. [31] for details). Inseinparison of the long time
tail of the monopole density to the Poissonian modellinghef $pontaneous decay of
noncontractible pairs discussed in the text.

mean field equation, Eq. (4), illustrated in Fig. 3. Noticattthe agreement is achieved
without any fitting parameters!

2.1.2 Dipolar spinice

Let us then consider the case of dipolar spin ice, where malea@xcitations are cou-
pled by long range Coulomb interactions. In general, thépduce an additional en-
ergetic term that has a smoothing effect on spatial fluatnatof the net charge. There-
fore, the naive expectation from this coarse grained pedtithat the monopole density
decay following a thermal quench in dipolar spin ice is astess fast as the nearest
neighbour case. (We refer the reader to Ref. [15] for a d&ounsof annihilation-
diffusion reaction processes with long-range interactipn

Monte Carlo simulations confirm this expectation at shornes, as illustrated in
Fig. 4, right panel. However, for sufficiently low target tperatures, a long-lived
metastable plateau develops in the time evolution of theapole density. This new
and unexpected feature is due to a curious interplay beti@eprange emergent
physics (the Coulomb liquid description) and lattice-ecphysics (related to how
monopole motion changes the underlying spin ice vacuum).

When a positive and a negative monopole meet in spin ice pinebgtween them
can sometimes be the minority spin rather than one of the timagority ones, as illus-
trated in Fig. 4, left panel. In this case, flipping the spireslmot annihilate the two
monopoles but rather creates an even more energeticatly degect: a 4in and a 4out
pair of tetrahedra. At low temperatures, the likelihood wéls process is so low that
it is effectively forbidden. We shall dub thenoncontractiblenonopole pairs. Once
they meet at the ‘wrong’ spin (i.e., the minority spin), thtmonopoles of a noncon-
tractible pair are bound together, held by their recipr@milomb attraction. Thisis a



direct consequence of the long-range nature of the dipiplelelinteraction.

The monopoles forming noncontractible pairs do not needssarily to separate in
order to be able to annihilate. It can also happen that an(ftiee) monopole collides
with the pair, whereby it can annihilate one of the monopatethe pair (that with
opposite charge to the free monopole) and free up the otheer Bictorially, one can
think of this agadioactive decaytriggered by the absorption of a monopole, in contrast
to spontaneous decay the pair, where the monopole and antimonopole separate an
annihilate elsewhere on the lattice. The radioactive pestraightforwardly reduced
the energy of the system whereas the spontaneous procassatmite energy barrier.

Which of the two processes controls the long time decay ofrtbeopole density
depends on the relative population of free monopoles andordractible pairs. If
free monopoles are abundant, then nearly all noncontiagiéirs decay radioactively
(vanishing energy barrier, fast relaxation channel). $téad most monopoles in the
system form noncontractible pairs, then their annihilatioust occur via spontaneous
decay (slow relaxation channel, due to the finite activatioergy barrier).

At high-temperature, when the system is nearly paramagaatl the defects are
dense, one can readily verify that the density of free motesis statistically larger (by
about one order of magnitude) than the density of noncatitttagairs — as reflected
in the initial conditions that can be inferred from Fig. 4ght panel. Therefore, we see
that apopulation inversioris required to cause the system to relax via the slow channel
and to develop a long-lived metastable plateau at low teatpes.

Exercise: obtain an estimate of the density of noncontractible pairthe param-
agnetic limit (i.e., randomly oriented Ising spins), andrgmare it to the total density
of monopoles in the same state.

Once again, the long range Coulomb interaction plays aartale in determining
how the free vs noncontractible monopoles evolve with tilneeed, free monopoles
and antimonopoles are drawn together by Coulomb forceshndrie stronger than the
attraction between free monopoles and noncontractible geharge-dipole interac-
tion). Naively, one would thus expect that the long rangerenttions favour direct an-
nihilation of free monopoles over the radioactive decayarfeontractible pairs. If the
bias is sufficiently pronounced, it can eventually causelthesity of free monopoles to
become vanishingly small, whereas the density of noncotilita pairs remains finite,
leading to the above mentioned population inversion.

Numerical Monte Carlo simulations of dipolar spin ice sugfdkat this understand-
ing of the behaviour of the system in terms of a Coulomb licquidure of monopoles
and noncontractible pairs is in fact correct. In particulae population inversion does
take place and the density of noncontractible pairs is yakdponsible for the long
lived metastable plateau (see middle panel in Fig. 4).

As in the case of nearest-neighbour spin ice, one can uszdlitial equations for
reaction-diffusion processes to model the evolution ofittemopole density following
a quench and to confirm the qualitative understanding ptedexbove. The processes
that ought to be included are:

1. monopole-antimonopole annihilation

2. noncontractible pair formation

10
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Figure 5: Left panel: Qualitative illustration of the dyniaal processes involved
in the monopole density evolution following a thermal queric dipolar spin ice.
(A=positive and B=negative monopole; D=noncontractibdér)p Right panel: Ex-
ample of a hexagonal path for the spontaneous decay of a ntvactble pair.

3. radioactive and spontaneous decay of noncontractiivie pa

They are qualitatively illustrated (with the exception bétspontaneous decay) in the
left panel of Fig. 5. In contrast to the nearest neighbouecase has to introduce
an additional density variable to represent noncontrecilairs (a new ‘species’ of
particles whose evolution is directly related to that offitee monopoles).

Exercise: write the differential equations corresponding to the dags in Fig. 5,
left panel, in the mean field limit. Consider explicitly thait where temperature is
much smaller than the energy barrier for spontaneous decayn@ncontractible pairs
can only decay radioactively. Solve the equations eithe\ditally or numerically
and compare the free vs noncontractible monopole dengii@s should use initial
conditions similar to those in the middle panel of Fig. 4)y To identify qualitatively
the range of parameters in the differential equations forolla population inversion
takes place and comment whether spin ice is likely to fatiwithis range or not.
(The differential equations coefficients for spin ice carebgmated from microscopic
probabilistic arguments akin to the derivationrofn the nearest neighbour case.)

Here we limit ourselves to modelling in some detail the ldntgttail of the monopole
density decay. As discussed above, it is evident from thallmidanel of Fig. 4 that
the noncontractible pairs are largely responsible fortdils Moreover, in this regime
we expect that spontaneous decay of noncontractible matreeileading dynamical
process in the system.

Firstly, we ought to estimate the typical energy barrek, . of a spontaneous
decay process. This is determined by the largest distarateatimonopole and an
antimonopole in a noncontractible pair need to be sepatstéedfore they are able to
annihilate elsewhere in the lattice. The shortest posgiaik is illustrated in the right
panel of Fig. 5. It requires separating the two monopolesipitd neighbour distance,
before they are brought together again to annihilate. Flwnalue of the magnetic
charge of a spin ice monopole, using the known lattice sjgeania the formula for the
magnetic Coulomb interaction, one can readily obtain




Exercise: using spin ice parameters in the literature, compute theealf A E,,.
for Dy, Ti,O; and Hg, Tiy O5.

Now that we have an estimate of the energy barrier, we careptbwith mod-
elling the spontaneous decay of noncontractible pairsti¢ldhat the existence of a
hexagonal decay path for each noncontractible pair is tanfobvious and ought to
be regarded as a working assumption here; it will be confirenpdsteriori by com-
parison with simulations.) We shall assume that the speotas decay events are
uncorrelated and they obey a Poissonian distribution, détbay probability per unit
timeP(t) = e~%/™< /7,.. The time scale for the activated process,is= moe” /T,
wherer is the characteristic microscopic spin flip time scailg€ 1 in Monte Carlo
simulations). Finally, the noncontractible pair densitytime ¢ is determined by the
number of pairs that have not annihilated via spontaneocesydat anyt’ < ¢, i.e.,

it
p(t) x 17/0 P(t')dt! o e=t/moe, (5)

In the Coulomb liquid description, the value &fF,,. is well-defined. However,
one should recall that it is in fact the result of a resumnmatitthe dipolar interactions
between spins which neglects quadrupolar corrections [[i2érefore, it is subject to
(small) statistical fluctuations in Monte Carlo simulatsoaf dipolar spin ice, which
are reasonably fitted by a Gaussian distribution. In the c&Bg, TioO; for example,
the peak of the distribution occursAtF,,. ~ 1.47 K and the variance i8.01 K2 [31].
The value ofp(¢) in Eg. (5) ought to be averaged over such Gaussian diswibbgfore
comparing with simulations:

2
G(AE) o exp —% (6)
PO, [ GaE(EAD) dAE
AE — AE,.)? t
x /exp —% exp [_W] dAFE. (7

Notice that Eq. (5) has only one fitting parameter left: theportionality constant,
i.e., the height of the metastable plateau induced by thg-leed noncontractible
pairs. The comparison between theory and simulationsustitited in the inset of
the right panel in Fig. 4. We note the good agreement avere than 20 orders of
magnitud€!), demonstrating that the qualitative understandingeimis of Coulomb
liquid and noncontractible pairs is indeed correct, antlttiechoice of single-hexagon
paths for the spontaneous decay is justified.

We close by stressing the role played by the long range Cdulateractions be-
tween the monopoles in determining the strikingly différbahaviour in dipolar vs
nearest neighbour spin ice. On the one hand, they are rabpo(e short range) for
the existence of metastable noncontractible pairs. Onttier dand, their long range
nature contributes to the population inversion that is kethe long time plateau in the
monopole density at low temperatures.

12
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Figure 6: Phase diagram of spin ice in presence (dfl4| field. The vertical arrows
represent field quenches from saturated ice (high monopmisity) to kagome ice
(low monopole density), discussed in the text.

2.2 Fidld quenches

An alternative protocol to drive a spin ice system from highaw monopole density
involves the use of an applied magnetic field pointing in ohthe global[111] crys-
tallographic directions. For intermediate and large figtdreggth, the field maps in the
Coulomb liquid language onto a (staggered) chemical piatidot the monopoles [12].
The resulting phase diagram is that which is typical of aitlegas system, with a first
order transition line ending at a critical end point (see Big

To understand this phase diagram, it is convenient to dithiéespin lattice (py-
rochlore, or corner-sharing tetrahedral lattice) intemiating kagome and triangular
layers perpendicular to the field direction, as illustraitedrig. 7, left panel. In the
limit of strong fields (the saturated ice regime), all of tipéns point along the field
direction while respecting the local easy axes (Fig. 7, meigdhnel). The ice rules
are violated everywhere and each tetrahedron hosts a miendipe monopoles form
an ‘ionic crystal’ of alternating positive and negative ies. As the field strength is
reduced, violations of the ice rules are no longer suffitjeoffset by a gain in Zee-
man energy and a regime where most tetrahedra obey the &t macovered (at low
temperature). This necessarily requires some of the spipsiht against the applied
field. At intermediate field strengths, these are mostlyspirthe kagome planes, be-
cause their Zeeman energy is smaller by a factor of three amedpwith the spins in
the triangular planes. This leads to an extensively degémeegime known as kagome
ice, illustrated in Fig. 7, right panel. At low field strengtithe kagome ice regime
becomes entropically unstable to the conventional spinggane, namely the ensem-
ble of all configurations satisfying the ice rules irrespexof the polarisation of the
triangular spins. All of these regimes cross over at suffitydarge temperatures into
a conventional paramagnetic regime.

The range of behaviours that can be investigated in quenichasing an applied
field is far richer than in thermal quenches [33]. For ins&rtbe presence of phase
transitions can lead to qualitatively different respongeduding the possibility of crit-
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Figure 7: Left panel: With respect to the glotal 1] direction identified by the field,

the pyrochlore lattice can be seen as a stack of trianguddlogy) and kagome (green)
layers perpendicular to the field direction. The easy axthefriangular spins is par-
allel to the field whereas the kagome easy-axes are cantadtrathe same projection
factor1/3 onto the field direction. Middle panel: Saturated spin iegestRight panel:

An example of a kagome ice spin configuration.

ical slowing down and universal scaling a la Kibble-Zur€hke fact that triangular and
kagome spins couple differently to the applied field can kedus tune the dimen-
sionality of the system (2B~ 3D). Moreover, the ability to tune both temperature and
Zeeman energy against the long range Coulomb interactiowslto control the dy-
namical processes at play and even to alter the charaitenishopole hopping time
scales.

Here we focus for simplicity on field quenches across the firder transition,
while the temperature is held constant. Our initial comditis the large field (satu-
rated ice) state, where each spin has positive projectighardirection of the field
(Fig. 7, middle panel). Every ‘upward pointing’ tetrahedrs occupied by a posi-
tive monopole and every ‘downward pointing’ tetrahedrondésupied by a negative
monopole. Further, we only consider temperatures andttfejg values whereby the
thermal equilibrium state after the quench is that of kag@eeHere the Zeeman en-
ergy of the triangular spins is sufficiently larger than temperature that they remain
effectively fully polarised in the field direction. On thehetr hand, the Zeeman energy
of the kagome spins is comparable to the temperature, aydatieetherefore disor-
dered (in so far as the ice rules due to exchange and dipd&aations allow). We
note that this choice of temperature and field after the quéically corresponds to
a negligibly small equilibrium monopole density — hencedhenches can be regarded
once again to be from high to zero monopole density, albeisthrting configuration
is much different from the initial paramagnetic state usethermal quenches. For
a more detailed discussion fif11] field quenches in spin ice, we refer the reader to
Ref. [33].

2.2.1 [Initial decay

Immediately following afield quench from saturated ice attemperature, the monopole
density is far greater than its thermodynamic equilibrivatue. Therefore, dynamical
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Figure 8: Pictorial representation of the initial monopammihilation processes within
a kagome plane, from left to right. Positive and negative opates are represented by
red and blue dots; the spins are not shown for simplicity. ieen crosses indicate the
spins the have flipped in going from one configuration to the (left to right panels).

spin flip processes that lead to monopole-antimonopoléhdation become favoured.

Notice that the triangular spins do not participate in thiéghdecay of the monopole
density. Not only they are pinned by a larger Zeeman ener@y the kagome spins,
but also — and more importantly — they are akin to the intengespin in a noncon-
tractible pair. Flipping a triangular spin in saturated lieads to the creation of a 4in
and a 4out defect rather than to the annihilation of two motexp

The initial dynamics of a field quench is thus confined to thekaZQome planes.
Here, flipping a spin between two monopoles leads to theigditforward annihila-
tion, which lowers the energy of the system. The processmoed so long as there are
kagome spins available, akin to a random dimer depositioogss on the bonds of the
dual honeycomb lattice (see Fig. 8).

Notice that dimers can sometimes ‘desorb’ during the ihitecay when thermal
fluctuations lead to a second reversal of the same spin, tteating anew the two
monopoles that had been previously annihilated. The déear@ate can be controlled
by tuning the value of the target field as well as the tempegattlere we focus for
simplicity on the regime where the desorption rate is néugjkgy

Ignoring the long-ranged Coulomb interaction between tbaopoles, one should
expect to be able to model the initial decay process withoreasle accuracy at the
mean field level, given the uniformity of the charge disttibn in the initial (satu-
rated) state. The equation of motion is thus the same as &seseneighbour thermal
quenches, Eq. (3). The agreement with Monte Carlo simulataf field quenches
in dipolar spin ice is excellent without fitting parametefig( 9), suggesting that the
Coulomb interactions do not have a measurable effect oretietion process.

The solution of the mean field equations is temperature iedégent. As time
passes, we see from Fig. 9 that the results of the simulaéeastually depart from
the mean field behaviour and become strongly temperaturendept. This signals
the end of the initial (dimer deposition like) regime. Ramdy selected neighbouring
monopoles have straightforwardly annihilated until ordglated ones are left behind
and they need to diffuse across the system before theirtgerasi decay further.

Exercise: implement a numerical algorithm (e.g., Monte Carlo) to mstie the
density of leftover monomers following a dimer depositimtess on the honeycomb
lattice. Compare it with the density of monopoles in dipapm ice simulations at
the end of the initial decay (from Fig. 9). Comment on the canispn in light of the
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Figure 9: Monte Carlo simulations of field quenches in dipslain ice for different

values of the target field{ = 0.2, 0.3, 0.35 Tesla, from left to right). Only the initial

(short time) decay of the monopole density is shown. Theerbfit colour curves
correspond to different values of the temperature and therposed black line is the
solution of the mean field equation Eq. (3), without any fgtparameters.

fact that spin ice simulations include small but non-zersaiption probability and
long-range Coulomb interactions.

When the target field value becomes sufficiently large, itadanger possible to
disregard desorption events. This is the likely cause ofifmarture from mean field
behaviour at short times, which begins to appear in the pghtl of Fig. 9.

2.2.2 Intermediateregime

The initial decay ends when there are no more monopole amt@mbpoles next to
one another that can be annihilated by flipping the intengspin. Monopoles are
now required to travel across the lattice before their dgmsin be further reduced.

Fig. 10 illustrates the behaviour over a large time windaw,different fields and
temperatures. In general, we observe that the relaxatie scales in the system
become substantially longer after the initial decay disedsin the previous section.
The new time scales show a clear temperature dependendewgrethe temperature,
the slower the decay), as one would expect in presence eh#oti energy barriers
obstructing the relaxation. This scenario is similar to tme observed in thermal
quenches in dipolar spin ice (Fig. 4, right panel). Howewer,see that the behaviour
in field quenches is far richer, with intermediate time regithat appear to be distinct
from both the initial as well as the asymptotically long tinecay.

These intermediate regimes are controlled by finite sizéeftime processes and
are rather challenging to model analytically. The compuerltsetween analytics and nu-
merics is not as straightforward when we do not have accessnte asymptotic limit
(e.g., short or long times). This interesting and uniquémnegf an emergent reaction-
diffusion process in presence of long-range Coulomb iteras and kinematic con-
straints, which can in principle be accessed experimgritalipin ice materials, lacks
indeed a proper understanding to date.

2.2.3 Longtime behaviour

At long times, the monopole density decay becomes incrgisaominated by the
longest relaxation time scale in the system. We should thex®e able to capture the
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Figure 10: Monopole density (thick lines), density of tgatar spins in the direc-
tion of the initial magnetisation (thin dotted-dashed $jjeand density of noncon-
tractible pairs (thin solid lines) from MC simulations fosgstem of sizd, = 8 (8192
spins), fieldsH = 0.2, 0.4, and0.6 Tesla (from left to right panels), and tempera-
turesT = 0.1, 0.15, 0.2, 0.3, 0.4, and0.5 K (red, blue, green, magenta, cyan, and
yellow, respectively). At intermediate times, some of ttiangular spins reverse, as
shown by the dip in their density; the latter has been maghifie a factor of 100
and 1,000 (left and centre panels, respectively) for visaabn purposes. In the right
panel, the density of triangular spins in the direction & &pplied field remains very
nearly1 throughout the simulations; the triangular spins remailagiged throughout
the quench and the monopole motion is effectively 2D. (Traelbidotted horizontal
line in each figure indicates the density threshold of one apote in the entire MC
system.)

physics of this regime by modelling analytically its asywotjat behaviour.

Whereas at small and intermediate target field values (teftraiddle panels in
Fig. 10) most of the monopoles at long times form nonconitscpairs, this is clearly
not the case at larger fields (right panel in Fig. 10). Heesaftve shall focus for
simplicity only on the latter case.

For large field values, the long relaxation times cannot loeilzed to long-lived
noncontractible pairs. Rather, it must be that an energsidsampedes the diffu-
sion and annihilation of free monopoles. The origin of thasrker can be understood
if we recall that monopole diffusion at large fields and lomnfeeratures takes place
nearly exclusively within each kagome plane, whilst thartgular spins remain fully
polarised (Fig. 10, right panel).

Under these conditions, a positive monopole in a kagomeegas lower Zeeman
energy when it sits in an upward-pointing tetrahedron thma downward pointing
tetrahedron (vice versa for a negative monopole, as iitestrin Fig. 11). If we were
to make a monopole hop across the kagome lattice, at evesy sttip it would have to
overcome a Zeeman energy bardés ~ 4.48 H K (whereH is the value of the target
field measured in Tesla).

Alternatively, the system can create a monopole-antimolegpair next to the ex-
isting monopole and then annihilate the existing monopdtle the oppositely charged
member of the pair. The outcome is equivalent to moving a rpoleofrom one
Zeeman-favoured tetrahedron to another Zeeman-favoetrathedron two lattice spac-
ings away from the first. This process costs interactionggn@nonopole pair creation
+ Coulomb interactions) but it can be done while gaining Zaeranergy. The cor-
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Figure 11: Schematic representation of monopole motiorkiagome plane, via ordi-
nary hopping (upper intermediate diagram) and via paiisgstshopping (lower inter-
mediate diagram). Both processes result in a negative nod@bping transferred from
a downward-pointing tetrahedron (left diagram) to one effibur nearest downward-
pointing tetrahedra (right diagram). Each process encsegsatwo spin flips but, ac-
cording to the order in which they are executed, the two meegface different energy
barriersd £ with opposite field dependence. The figure shows the valueedbarriers
for nearest-neighbour spin ice. In the main text we discuss they are modified in
presence of long-range dipolar interactions. The field dépece, however, remains
unchanged. The tails of the green arrows originate frompirelseing flipped in going

from one panel to the next. Only the spins in the front thrémkeedra are drawn for
convenience. The triangular spins remain polarised throut

responding barrier, using the Coulomb liquid descripticem be estimated a&? ~
2A — 2FE,, + Fa, — 4.48 H K, whereA is the bare monopole cost aifdl,, (Foy,) is
the strength of the Coulomb interaction between two neargigthbour (next nearest
neighbour) monopoles.

Exercise: using spin ice parameters for Byi.O7; and Hg TioO; from the litera-
ture, estimate the corresponding values of the pair-asdisbpping barrier.

Notice that the two dynamical processes have opposite depee on the applied
field strength. Using spin ice parameters appropriate fofli3¥0-, the second process
(pair assisted hopping) becomes energetically favourdunespect to the first one for
H 2z 0.5 Tesla. Wher = 0.6 Tesla (right panelin Fig. 10), the barrier to pair assisted
hopping is of the order df K whereas the barrier to ordinary hopping is approximately
3K.

In order to confirm our understanding of the slowing down @&f thonopole hop-
ping, we attempt to collapse the long time tails of the Moragl€simulations of dipo-
lar spin ice by rescaling time using the characteristicvatgid time scale®”/”. For
the targetfieldd = 0.6 Tesla, we find a good collapse when we chadBe= 2.4 K in
reasonable agreement with the estimated value for the gsistad hopping (Fig. 12).
However, larger system sizes and longer simulation timesexquired for a more dis-
cerning and conclusive comparison [33].

In summary, field quenches in spin ice offer a realisationevksal paradigmatic
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Figure 12: Collapse of the long-time decay of the monopotesitg (thick lines) and

of the noncontractible monopole density (thin lines) afescaling the time axis by a
factorexp(—2.4/T). The MC simulations are fof. = 10 with H = 0.6 Tesla and

T = 0.13, 0.15, and0.18 K (red, blue, and green curves, respectively). The good
quality of the collapse indicates that the simulated systane large enough for the
energy scale of.4 K not to exhibit appreciable system size dependence.

concepts in nonequilibrium dynamics: dimer adsorptioryl@mbic reaction-diffusion
physics, and kinetically constrained slow dynamics. Tlige: unusually high degree
of tunability, as one is able to control, say, the time scélie elementary dynamical
move through a Zeeman energy barrier; or the dimensionafitiie final stated =

2 kagome vs.d = 3 spin ice); or else the relative importance of dimer desorpti
compared with Coulomb interactions between the monomers.

Given the availability of a range of experimental probesnfagnetic systems and
the ability to apply time dependent fields of the strengthunesgl for spin ice materi-
als, one can expect that it will be possible to study some esdtout of equilibrium
phenomena experimentally in the near future.

Further reading on recent experimental work in this dimtt including a curi-
ous interplay between magnetic and thermal degrees ofdredelading to magnetic
deflagration effects [45] — can be found in these papers [B444], and references
therein.

3 Example2: Kitaev’'storic code

So far we considered out of equilibrium phenomena in classipologically ordered
systems. The observed interplay between the non-locateafithe phase, the emer-
gent excitations, and local kinematic constraints is likiel give rise to interesting
properties and phenomena also in related quantum mechapstams. However, the
study of strongly correlated quantum systems in two or higlimensions far from
equilibrium is in general a tall order. For this reason, wallflocus here on one of the
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Figure 13: lllustration of the stad, and plaquette3, operators in the toric code
Hamiltonian. The figure also shows the support of two windowp operators on the
direct lattice,£; and £, (periodic boundary conditions are assumed).

simplest examples of quantum systems that exhibit topoggirder in 2D: Kitaev’s
toric code [8].

3.1 Themodd

The toric code is a system of spin-1/2 degrees of freedomdiwan the bonds of a
square lattice, subject to the Hamiltonian

H=-X1Y Ai=Xg Y By, (8)
s p

whereA4, Ap > 0 are two coupling constants and the star and plaquette apsrat
As = [l;e, 0f and B, =[], of are defined as in Fig. 13. (The experienced reader
will recognise this as a gauge-fixed lattice gauge theoilyg Geauty of the model lies

in its simplicity. Every term in the Hamiltonian commutesthvevery other, namely
[As, Ayl =0, [Bp, By] = 0, and[As, B,] = 0, forall s, s’, p, p’. One can therefore
diagonalise simultaneously all these operators. Evelnsigite of/ is also an eigen-
state of eachd, and B, (which have eigenvalug:1). With the choice o\ 4 andAp

both positive, the ground state,) satisfies the equations

As [tho) = [tbo), By, [1o) = [o), Vs, p.

Despite its simplicity, the model and its ground state ardrfam trivial. Let us
assume periodic boundary conditions for the system (i.is.deefined on a torus, hence
the first part of its name). The number of star (plaquetteyatpes equals the number
of lattice sitesN. However, not all of them are independent. The product o$tait
(plaquette) operators is alwaysecause it is the trivial product of squares of spin-1/2
(Pauli matrix) operators. (Notice, for instance, that guene we take the product of
two neighbouring star operators, th¢ operator shared between them is squared; sim-
ilarly for plaquette operators.) Therefore, the numbendgpendent star and plaquette
operators i2 N — 2 whereas the number of degrees of freedom in the systeVis
Specifying the values of alll;, and B, determines uniquely the energy of the system
(H) but it does notidentify a unique state. Rather, it identifies a 4-fold degyate
manifold of states.
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In order to resolve the ground state degeneracy one needsltoxfo additional
spin-1/2 like operators that commute with @} and B, and yet are not directly de-
pendent on them. One can verify that there are no such opegweith local supportand
we need to consider instead products of an ensemble of spiatmps that spans the
entire width of the system. For instance, we can use the tejpsl6; andZ; illustrated
in Fig. 13 and take the products:

ry= ] o Iy =[] of (9)

€Ly €Ly

Itis straightforward to see that the new operaloysndl’; commute with one another
and with all B, (trivially) and all A, operators (the latter is a consequence of the fact
thatI'; » share either two or no spins with any of the star operatotsgirieigenvalues
+1 completely resolve the degeneracy.

The choice of path€; and £, is immaterial so long as their respective winding
numbers are preserved( winds around the torus in one direction oneg; winds
once along the other direction). Given two different cheiber £,, the product of
the two corresponding’; operators is equivalent to the product of all the plaquette
operators in between them. In the ground state, the lattealbequal tol and so is
their product; hence, the twid, operators must have the same eigenvalue. Similarly
for L5. (These additional operators are equivalent to windingsilloops that the
reader may be familiar with from lattice gauge theory.)

Notice that the nature of the degeneracy is not related tditbaking of a sym-
metry. Indeed, one can show that all local operators havialt{namely, zero-ranged)
correlations. The degeneracy depends on the topology aystem: It is 4-fold on a
torus (genug = 1) and it would be in gener&@?9-fold on a surface of genug The
information that distinguishes one ground state from agdthcontained in the eigen-
values of the operatoil$, andI';. These values cannot be determined from knowing
the state of any finite subset of spins in the system; we nekddw their state for a
subset that spans the entire system. Moreover, we have Isaethé eigenvalues of
I'; andT'y are independent of the microscopic choice of pathsand £,; they de-
pend only on their global properties, namely how they wiralad the torus. As such,
we say that the system is topologically ordered and theréiffedegenerate states are
dubbed topological sectors.

The ability to store quantum information non-locally as pesyosition of ground
states of this system, inherently protected from localysbdtions, is responsible for
the greatinterest in recent years form the quantum infdonaind quantum computing
communities (hence the second part of its name).

Exercise: check that the choice of* operators in Eq.(9) is arbitrary and one
could equally uses® operators upon replacing the path®, and £, on the direct
lattice with equivalent paths on the dual lattice. Discuss action of the new winding
operators with respect to the old ones (equivalently, tbemnmutation relations).

Although the toric code is indeed very different from spie,ian interesting parallel
can be drawn between the two systems. Let us consider thevelges+1 of the
o” operators and let us represent them as arrows pointing freersablattice to the
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Figure 14: Qualitative illustration of the creation and aegtion of plaquette type de-
fects in the toric code. A single spin flip creates two negafilaquettes (left panel),
which can then separate via the action of other spin flip dgrswithout incurring
further energy barriers (middle panel). If the two defesfaquettes wind around the
entire system before annihilating, they change the topoébgector of the state (right
panel).

other () and vice versa-). The star operators in the Hamiltonian favour a ground
state where the product of the operators around each site of the latticetis. In
the language of the arrows, this corresponds to enforcingvan number of arrows
pointing into (equivalently, out of) each site. This is tlaere as the 2in-2outice rules
in spin ice, with the addition of 4in and 4out tetrahedra. Ppleguette operators in
the Hamiltonian are kinetic terms with respect to the arrepresentation, introducing
quantum dynamics into an otherwise classical vertex mottesummary, the toric
code ‘looks like’ a quantum spin ice model in 2D with the agtditof low-energy
4in and 4out vertices. This addition is however respondiime major difference in
their properties, whereby one system is in a Coulomb phageam emergent gauge
symmetry and the other is inZ, topologically ordered state.

3.2 Elementary excitations

In order to understand the nature of the elementary exaitatover the ground state
of the toric code, let us consider the action affaoperator applied to a given spin
While it trivially commutes with the star operators, theuabf thes* component of
the spin is changed and therefore the two plaquette opstthmrshare this spin acquire
a negative eigenvalue (Fig. 14, left panel). The energy®§ifstem is correspondingly
raised by )\ s.

In a conventional spin-1/2 ground state, a single spin salas typically the low-
est energy excitation. Acting with further flipping openaeosts increasingly more
energy. However, much like spin ice, this is not the caselfertoric code. Consider
the action of another? at a sitej that belongs to one of the two negative plaquettes
created bys¥. Having now two spins flipped, the eigenvalue of that platpuverts to
its lowest energy (positive) state. On the other hand, tisea@ew plaquette that shares
spin;j but not spin and its eigenvalue becomes negative. In a nutshell, thereatt;
is to separate the negative plaquettes without introduaiygfurther energetic defects
(akin to how appropriate spin flips separate monopoles imes¢aeighbour spin ice
without any energy cost). This is illustrated in the middéapl of Fig. 14. Therefore,
the elementary excitations in the toric code are deconfineguettes (equivalently,
stars) with negative eigenvalue. Each defect costs an gaaug (equivalently2X 4).
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Figure 15: Qualitative illustration of the braiding of a gleette defect around a star
defect.

They can only be created or annihilated in pairs.

In contrast to classical spin ice, we have here two types oftations: defective
stars and defective plaquettes. Whereas they do not inté¢hay have non-trivial re-
ciprocal statistics. Indeed, let us consider two negat@guette® andp’ on the lattice
(they can only be created in pairs and therefore it is notulsefconsider only one of
them in isolation). In order to create these two excitatifsomn the ground state of
the system, one has to choose a path fgotm p’ on the dual lattice and act with the
product of allo¥ operators along the path (see Fig. 14). One can check thehthee
of path is immaterial as any two different paths differ fromecanother by products
of star operators (assuming that there are no star defetistimeen them). Similar
considerations apply to negative star operatoksaatds’, with respect to paths on the
direct lattice froms to s’ and products of? operators. We can now imagine to have
two plaquette and two star defects in the system; we keep tfrthem fixed and we
drag, say, one of the plaquettes around one of the star défedhotaround the other)
and back to its initial position (Fig. 15). The initial anddirstate are the same in terms
of positions of the defects. However, the braiding operatibmoving one plaquette
around a star necessarily changes the parity of the numhenes that the dual path
p-p’ intersects the direct pattts’. This results in the state of the system acquiring
an overall phase factaf™ = —1. Plaquette and star defects have relatieenionic
statistics!

Exercise: construct the wave functions of the two states representé&ibi 15,

namely|vier) = [lic;, 07 [1er, 05 1%0) @nd[Yigne) = Tlic,uiy) o7 e, 05 l%0)-
Using the well known (anti)commutation relations betweeaunliRmatrices, show that
the two states are indeed identical up to an overall minus.sig

The emergence of quasiparticles with fractional stagstwith respect to the mi-
croscopic degrees of freedom in the system is another icstaihfractionalisation in
topologically ordered systems.

3.3 Dynamics

Once defective stars and plaquettes are created in thersytstey are static in so far
as the action of the Hamiltonian is concerned. None of theaipes in Eq. (8) can
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alter their position or their value. Defects acquire dyresranly if we assume that
either thermal or quantum fluctuations are present, whictegdly couple tor* and

o* operators (as well as?, but we shall not discuss that case in these notes). In
presence of such fluctuations, the defects are able to meeé/facross the system.
Once again, similarly to spin ice, defects act as dynamalifators for the system'’s
response and relaxation. Spin flips that result in the happifa defect do notincur an
energy barrier; whereas generic spin flips away from exgdiefects must overcome
the energy barrier to create two new excitations.

Contrary to spinice, where the role of the defects as dynaifaécilitators is readily
reflected in the magnetic response of the system (e.g. gteptibility), the case of the
toric code is more subtle due to the lack of any local coriatat Here we discuss how
the dynamics of the excitations relates to the topologioaperties of the system.

Let us prepare the system in a given topological sector. Téation, say, of a
pair of defective plaquettes only disrupts the spins aldmgpath that was chosen to
generate them. Away from this path, the eigenvalues of theliwg loop operators
in Eqg. (9) remain unaltered. Once fluctuations allow the cléfe plaquettes to move
around, the eigenvalues of the winding loop operators asstally well defined
only if the two plaquettes remain close to one another. Omeg separate and wonder
across the system, the information about the initial togicial sector is lost. Indeed,
if we create a pair of negative plaquettes, wind them arobadystem, and then we
annihilate them, the outcome is that all winding loop oparstrossing the winding
path of the plaguettes change sign and the topological settihhe system changes
(Fig. 14, right panel).

In order to understand how a defect-driven change in topcébgector takes place
dynamically, let us take a look at the shape of the relevamtggrbarrier. Starting from
the ground state, the system faces an energy increase forgaton of two defects
(A = 4X4 or A = 4)\p, depending on the type of defect). The energy remains
then constant as the defects move about. In order to chapgétpcal sector, one
of the defects has to separate from the other and wind ardwnsyistem before they
annihilate. As a result, the width of the barrier is of theeardf the system sizé, after
which the energy decreases again to the GS value upon atimithe two defects.
The shape of such barrier is depicted in Fig. 16.

Local quantum fluctuations can induce a change in topolbg@zor by exciting a
virtual pair of defects and make them hop (whilst the systeim a virtual excited state)
across the entire lattice before they annihilate and theggrie finally lowered. If the
strength of the quantum fluctuations that couple tostheperators ig, then the height
A and width~ L of the barrier imply that the quantum tunnelling under theibais
a perturbative process of ordérin t/A. The tunnelling rate- (t/A)” is therefore
exponentially suppressed in the size of the system. Cayrepgly, the relaxation
time scale from one topological sector to another due tol lggantum fluctuations
grows exponentially with system size; ~ exp[LIn(A/t)].

This is to be contrasted with the analogous process in pcesehthermal fluc-
tuations. Once a pair of (real) defects has been thermatlifjezkagainst the energy
costA, they are now free to diffuse across the system. The prdbathiat they wind
around the system and then they annihilate is related torgi@éissage probability of a
random walk to come back to the origin after winding arouredttrus an odd number
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Figure 16: Qualitative illustration of the shape of the gydyarrier to change topolog-
ical sector in the toric code via defect creation, diffusiand annihilation. The arrows
represent thermal and quantum processes, with their reléaze scales.

of times, which is polynomial ir.. The overall probability of the process is therefore
given by the product of the activation probabilityp(— A /T') times a factor that does
not depend or or 7" and that scales polynomially in system size,~ e*/!Poly(L).

Whether thermal or quantum processes are the dominanilmaidn in the ther-
mal relaxation of the system is thus a matter of order of Bmlh a system of finite
size, there is a temperature below which the exponentiaisgpdown of thermal pro-
cesses due to the activation barrier exceeds the expoh&ntjaression in system size
of quantum tunnelling and the latter becomes the fastergg®¢y, < 7¢). On the
other hand, if the system becomes larger and larger at fixagesature, the protec-
tion from quantum fluctuations is bound to become far grethtar the protection from
thermal fluctuations, and the latter become the faster agitaxchannelfy > 7). A
more general discussion of quantum vs thermal relaxatioogsses and their relation
to (topological) quantum glassiness can be found in Ref. [39

It is worth commenting that relaxation times which scaleypomially in system
size are unusual in ordered phases and signal a remarkadkaess. Whereas quan-
tum topological order in the toric code is highly robust tagtum perturbations, it is
immediately lost (in the thermodynamic limit) when the gystis coupled to a thermal
bath. This issue is discussed in detail in Refs. [34, 35, B6ithermore, Ref. [37] uses
numerical simulations to investigate the relaxation dyitarof the toric code coupled
to a thermal bath and discusses its connection to thernwilifya

3.4 Intriguing comparison: Kinetically Constrained Models

As illustrated in the examples above, the appearance oldgjoally ordered phases (in
lattice models) is closely related to the presence of dontieaergy terms that enforce
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local constraints (cf. dimer / vertex / plaquette constsinAlbeit insufficient to drive
the system into a conventionally ordered phase, these enerdirectly responsible for
the non-trivial global properties of the system.

It is interesting to draw a parallel between the role of lamatstraints in topolog-
ically ordered systems and another area of research, naheglpfKinetically Con-
strained Model4§KCM) [1], where local constraints are used instead to irdoon-
trivial dynamical properties (i.e., unusually slow resperand equilibration whereas
the thermodynamic properties remain altogether trivial).

Kinetically constrained models received much attentiothim literature as an at-
tempt to understand the emergence of long relaxation tirmesand glassiness in
systems without disorder.

Here we briefly review two examples and we comment on theilogies and dif-
ferences with respect to the topologically ordered systeonsidered earlier. We limit
our discussion to classical 2D systems, although higheed#ional [48] as well as
quantum [38, 39] examples are also available.

3.4.1 Squarelattice plaquette model

The first model we consider is an Ising model on the squariedafivith spins living
on the sites, not the bonds) and Hamiltonian [40]:

H=-7> 1[5 (J > 0), (10)
P i€Ep
wherep labels the plaquettes on the lattice aﬂggp S, is the product of the spins at
the corners of plaquetje It belongs to a broader class of models knowgasihedric
models and it is also directly mappable onto Baxter's eigirtex model (notice the
direct correspondence with the toric code).

The system does not exhibit any phase transitions as a éunofi temperature
and the high temperature paramagnetic phase is continuoashected to the low
temperature phase where all plaquettes have the sameﬁjgp&‘i = +1forJ > 0).
This is most straightforwardly seen in the language of thed dariables, = Hiep Si,
defined on the centres of the plaquettes of the originatittivhere the Hamiltonian
reduces to that of a trivial paramagnet,

H=-JY 7 (11)
p

Notice that the Hamiltonian in Eq. (10) is invariant undamnisformations that flip
straight lines of spins on the direct lattice, spanning thtee system (notice the analo-
gies and differences with the winding loops introduced ia discussion of the toric
code). This invariance has two important consequencestlyithe zero tempera-
ture limit when all plaquettes are polarised is sub-extatgidegenerate (namely, the
number of degenerate configurations scales with the expiahehthe linear sizel
of the system rather than the exponential of the volue Secondly, all two-spin
correlators

e—BH
Gy — ¢ & — —-BH
(S:9;) = E SiS; 7 = E e (12)
{Si} {Sk}
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Figure 17: lllustration of defects in the square plaquettelael. A single spin flip
changes the sign of the 4 plaquettes it belongs to, whictharegairwise free to move
along straight lines across the system. The bottom porfitmediigure illustrated how
isolated defects are brought together to eventually alatéhias the system attempts to
reach one of its defect-less ground states via the allow@ts{rained) defect dynamics.

vanish identically at all temperatures. This is becauseetli® always at least one
straight line (either horizontal or vertical or both) thaieg through spiri but not
spinj. Therefore, the correlators vanish by symmetry (so londnasystem remains
ergodic).

If the duality transformation trivialises the thermodyriasof the system, the dy-
namical processes become then nontrivial. At low tempegatn order to transition
from one lowest energy configuration to another, the systerst mvercome an energy
barrier that is similar to the one encountered in the tordecd-=irstly, a thermally ex-
cited spin creates four defective plaquett&s£ 8.J). Then neighbouring spins can flip
to annihilate two defective plaquettes and create two nessotius effectively sepa-
rating the four defective plaquettes in pairs without ciagghe energy of the system
(see Fig. 17). Contrary to the toric code however, the matiust follow a straight
line. If the pairs wind around the system before they anatbjlthe system ends in a
new lowest energy configuration. Once again, we expect atiax time scales that
are exponential in the height of the barrier over the tentpesgexp(A/T), times a
temperature independent factor that scales polynomiatlytive system size.

Although we considered the time scale for the system to ritax one lowest
energy state to another, similar arguments apply to thexadtan time scales in the
system as the temperature is progressively reduced (se&efg[40]).
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Figure 18: lllustration of the original triangular lattioé the S spins and the dual tri-
angular lattice of the- spins (left panel, black and blue lattices, respectivelihe
rightmost three panels represent the steps (from left tiotyigp annihilate 3 defec-
tive plaguettes at the corners of a dual triangle of gidey flipping threeS spins in
sequence. Notice that in the process we cannot avoid toecoeatadditional defect.

3.4.2 Triangular lattice plaquette model

The second model we consider is similar to the former defimetthe triangular lattice
(again, with Ising spins living on the sites). The Hamiltamiof the system can be
written as [41]

H=7> 1] 5 (J >0), (13)

vV i€V

wheresy labels the downward-pointing triangular plaquettes Ehgv S; is the prod-
uct of the three Ising spins at their three vertices. (Thssislar but not to be confused
with the Baxter-Wu model, which includes upward as well asgward pointing tri-
angles.)

The thermodynamic properties of the system are best umaerst terms of dual
variablest, = [[,;., Si, which live on the triangular lattice formed by the centres
of the downward pointing triangles in the original lattided. 18, left panel). If the
linear dimension of the system is a power2fi.e., L = 2", 3n € N) and periodic
boundary conditions are assumed, one can show that ther@nis-to-one correspon-
dence between the two representations of the system [41helnmew language, the
Hamiltonian becomes

H=J7Y rg, (14)
\Y

i.e., that of an ensemble of noninteracting spins in an egpinagnetic field. In the
dual language, it is straightforward to write the partitfomction of the system and
use the mapping to obtain correlation functions of the aagdegrees of freedom [3].
The system does not undergo a phase transition as a fundéttemperature and the
lowest energy configuration (where all, = —1) is continuously connected to the
trivial paramagnetic phase.

Whereas the duality transformation allows to demonstratghtforwardly the
trivial thermodynamics of the system, the dynamical preessbecome nontrivial.
Flipping an individual spin of the original systerff)(now leads to changing the sign
(i.e., flipping) the three plaquette variable$ that share the spin (Fig. 18). One should
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contrast this to the corresponding defect dynamics in the tmde (where, e.qg., flip-
ping a bond spin changes the sign of the two adjacent stamquptte operators) and
of the square lattice plaquette model (where flipping a $ta shanges the sign of
four plaquettes). Notice that the spins live only in theupward pointingtriangular
plaquettes of the spin lattice.

The presence of such dynamical constraints plays a crudéinr the response and
equilibration properties of the system, which become drakly different from the ones
expected for a trivial paramagnet in an applied field. Sirhyilto the square plaquette
model, Monte Carlo simulations show the emergence of unlydaag relaxation time
scales and glassiness at low temperatures [41]. Howeeebghaviour in this case is
remarkably different from the activated behaviour encetad in the toric code and in
the square plaqguette model, as the characteristic time gecals exponentially with
thesquare of the inverse temperati#d, 3, 5].

In order to understand this behaviour, let us consider h@sttstem approaches
the lowest energy state upon lowering the temperature Hiptirpose, it is sufficient
to consider the lowest energy excitations above the grotate where alt, = —1. It
is possible to show that these excitations take the form oil@gral triangles of linear
size/ = 2%, with k integer, that have single isolated defests= +1 at each of their
three vertices, as illustrated in Fig. 18. (The proof is giue detail in Ref. [41] and
will not be reported here.)

These defect structures are metastable, in that they caeneimoved (or moved)
without incurring an energy cost. The steps towards thehdlatipn of a structure with
k = 1 are explicitly shown in Fig. 18. They require flipping thresginal (S) spins,
which in turn flip three plaguette-] spins each. In the process, we generate one more
defect than the three we started with and the overall eneagyeb is therefor@.J.

The same process can be iterated for larger defect stractorannihilate a struc-
ture of linear siz&* one has to annihilate the three structures of linearZizé within
it, which requires overcoming the barrier to create onesestéfect2./. Similarly for
each of the structures of linear si2é~!, etc. Until we arrive at = 1, where the
process above applies. The overall barrier is thus: 2Jk = 2.Jlog, (¢), wherel is
the initial separation between defects.

Exercise: follow the discussion in the text to prove that the smalleshiber of
additional intermediate defects that one ought to createriter to annihilate three
defective plaquettes at the corners of an equilateral giarof side2” is k.

In thermodynamic equilibrium, the average separation betwdefects scales as
the inverse square root of their density, namély exp(.J/T) since from Eq. (14)
we see that the energy cost of a defed.jswhence their density is- exp(—2J/T).
Therefore,A = 2.Jlog,(exp(J/T")) and the corresponding relaxation time scale is
7~ exp(A/T) ~ exp(2J2/T%1n 2).

Even though it is still the case that relaxation time scaleerde only in the zero
temperature limit, the plaquette energy terms on the triardattice achieve a qualita-
tively different behaviour than the square lattice. Thexegise to an unusually strong
slowing down which is exponential in the square of the inggesnperature. This is a
substantial improvement in robustness to thermal fluatnatiOne might thus wonder
whether new lattice models can be designed where an apatepgombination of pla-

29



quette energy terms manages to achieve, say, topologaad as in the toric code and
exponential inverse temperature square protection framthl fluctuations, as in the
triangular plaquette model. In this case, the enhance gifotewould not be thermo-
dynamic (in the sense of topological order surviving up tonéditemperature phase
transition) but rather dynamical, slowing down the dedisibg thermal defects into a
nearly glassy state.

3.4.3 Quantum kinetically constrained models

Quantum versions of kinetically constrained models algstealthough their discus-
sion is beyond the scope of these short lectures. They arenergl less studied and
less well understood than their classical counterpartsneSexamples are discussed
in Ref. [39], covering both two-dimensional and three-disienal cases that exhibit
energy barriers and quantum relaxation rates akin to the idostrated in Fig. 16.

Similarly to the case of the toric code model, one finds thafddut low energy
barriers are effective at slowing down quantum tunnellingcpsses (exponentially
suppressed in the width of the barrier), yet they are ratheffective with respect to
thermal fluctuations (exponentially suppressed in the Hiedd the barrier but only
polynomially suppressed in the width). This leads to anréggtng parallel between
classical and quantum glassiness, and the fact that (tgicald quantum glassiness
can be a behaviour inherent to zero-temperature, whiclppéss immediately at any
finite temperature [39].

As suggested in these notes, it is often found that a rich myoce phenomenol-
ogy in quantum kinetically constrained models is accomgaéuy the emergence of
quantum topological order. In their dual description, quamkinetically constrained
models can be seen once again as models of point-like merticht move on a lattice
according to allowed and disallowed processes. Other radtat typically exhibit
topological properties are those where particle hoppinggsses are accompanied by
non-trivial phase factors (see e.g., Haldane’s modeltitraal Chern insulators, and
the recent artificial gauge fields in ultracold atomic systenit will be interesting to
investigate how quantum kinetically constrained modelsalve when similar phase
factors are present in the allowed dynamical processes.

4 Conclusions

In summary, we have discussed a few examples of how systetimsopblogical prop-
erties behave out of equilibrium. The topological naturtheflow energy state in these
systems is closely related to the fractionalised charaxtiés elementary excitations.
Inturn, we have seen that these excitations are directboresble for the response and
equilibration behaviour. This intriguing interplay givese to a rich variety of exciting
phenomena that we are just beginning to understand andfglass

In the context of statistical mechanical models such asidalkspin ice, we have
shown how the nature of the low temperature phase and it$aéincis reflects in
reaction-diffusion relaxation processes with local amabgl kinematic constraints as
well as emergent long range Coulomb interactions. Spinhae bffers a realisation
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of several paradigmatic concepts in nonequilibrium dyreamivith an unusually high
degree of tunability.

We also discussed how a similar interplay between the tgicdbground state and
its fractionalised excitations leads to interesting dfraltion properties in quantum
mechanical systems, in presence of both quantum and the@enairbations. How-
ever, the additional complexity of out of equilibrium quamt mechanics in strongly
interacting systems limits the discussion at present tecesdmt simple examples (e.qg.,
the toric code) and achieves a far less detailed understaitthn its classical counter-
part (e.g., spin ice, kinetically constrained models). Wtitstanding, one encounters
interesting scenarios demonstrating the interplay of lmgical order and glassiness,
which raise intriguing questions. Quantum topologicalesrappears to be more sus-
ceptible to thermal fluctuations than conventional (lotgbes of order, at least in two
and three dimensions. Could topological protection be awpd by slowing down
(thermal) defects, i.e., freezing them out in a glassy 8t&an this be achieved with-
out disorder, using fractal structures as, e.g., in thetidally constrained triangular
plaguette model?

Overall, this is an exciting and timely research direct@sp thanks to recent ma-
terial and technological developments that are produamigereasing number of ex-
perimental results on systems with topological propedigf equilibrium.
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