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I. TOPOLOGICAL PHASES I: THOULESS PHASES ARISING FROM BERRY PHASES

The integer quantum Hall effect has the remarkable property that, even at finite temperature in a disordered
material, a transport quantity is quantized to remarkable precision: the transverse (a.k.a. Hall) conductivity is
σxy = ne2/h, where n is integral to 1 part in 109. This quantization results because the transport is determined by
a topological invariant, as stated most clearly in work of Thouless. Consequently we use the term “Thouless phases”
for phases where a response function is determined by a topological invariant.

In the cases we discuss, including the recently discovered “topological insulators” and quantum spin Hall effect, this
topological invariant results from integration of an underlying Berry phase. It turns out that the Berry phase can be
rather important even when it is not part of a topological invariant. In crystalline solids, the electrical polarization,
the anomalous Hall effect, and the magnetoelectric polarizability all derive from Berry phases of the Bloch electron
states, which are introduced in subsection 2. Before that, we give some background for the original quantum Hall
discovery that triggered a flood of developments continuing to the present day.

A. Physical background of the IQHE

(For the standard treatment based on Landau levels, we refer the reader to the books by Prange and Girvin, or
Das Sarma and Pinczuk.)

B. Bloch states

One of the cornerstones of the theory of crystalline solids is Bloch’s theorem for electrons in a periodic potential.
We will demonstrate this in the following form: given a potential invariant under a set of lattice vectors R, V (r+R) =
V (r), the electronic eigenstates can be labeled by a “crystal momentum” k and written in the form

ψk(r) = eik·ruk(r), (1)

where the function u has the periodicity of the lattice. Note that the crystal momentum k is only defined up to
addition of reciprocal lattice vectors, i.e., vectors whose dot product with any of the original lattice vectors is a
multiple of 2π.

We give a quick proof of Bloch’s theorem in one spatial dimension, then consider the Berry phase of the resulting
wavefunctions. A standard fact from quantum mechanics tells us that, given two Hermitian operators that commute,
we can find a basis of simultaneous wavefunctions. In the problem at hand, we have a non-Hermitian operator (lattice
translations by the lattice spacing a: (Tψ)(x) = ψ(x + a)) that commutes with the Hamiltonian. It turns out that
only one of the two operators needs to be Hermitian for simultaneous eigenstates to exist, and therefore we can find
wavefunctions that are energy eigenstates and satisfy

(Tψ)(x) = λψ(x). (2)

Now if the magnitude of λ is not 1, repeated application of this formula will give a wavefunction that either blows up
at spatial positive infinity or negative infinity. We would like to find wavefunctions that can extend throughout an
infinite solid with bounded probability density, and hence require |λ| = 1. From that it follows that λ = eiθ, and we
define k = θ/a, where we need to specify an interval of width 2π to uniquely define θ, say [−π, π). In other words, k
is ambiguous by addition of a multiple of 2π/a, as expected. So we have shown

ψk(x+ a) = eikaψk(x). (3)

The last step is to define uk(x) = ψk(x)e−ikx; then (3) shows that uk is periodic with period a, and ψk(x) = eikxuk(x). 1

1 Readers interested in more information and the three-dimensional case can consult the solid state text of Ashcroft and Mermin.
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While the energetics of Bloch wavefunctions underlies many properties of solids, there is also Berry-phase physics
arising from the dependence of uk on k that was understood only rather recently. Note that, even though this is
one-dimensional, there is a nontrivial “closed loop” in the parameter k that can be defined because of the periodicity
of the “Brillouin zone”’ k ∈ [−π/a, π/a):

γ =

∮ π/a

−π/a
〈uk|i∂k|uk〉dk. (4)

How are we to interpret this Berry phase physically, and is it even gauge-invariant? We will derive it from scratch
below, but an intuitive clue is provided if we make the replacement i∂k by x, as would be appropriate if we consider
the action on a plane wave. This suggests, correctly, that the Berry phase may have something to do with the spatial
location of the electrons, but evaluating the position operator in a Bloch state gives an ill-defined answer; for this
real-space approach to work, we would need to introduce localized “Wannier orbitals” in place of the extended Bloch
states.

Another clue to what the phase γ might mean physically is provided by asking if it is gauge-invariant. Before,
gauge-invariance resulted from assuming that the wavefunction could be continuously defined on the interior of the
closed path. Here we have a closed path on a noncontractible manifold; the path in the integral winds around the
Brillouin zone, which has the topology of the circle. What happens to the Berry phase if we introduce a phase change
φ(k) in the wavefunctions, |uk〉 → e−iφ(k)|uk〉, with φ(π/a) = φ(−π/a) + 2πn, n ∈ Z? Under this transformation, the
integral shifts as

γ → γ +

∮ π/a

−π/a
(∂kφ) dk = γ + 2πn. (5)

So redefinition of the wavefunctions shifts the Berry phase; we will see later that this corresponds to changing the
polarization by a multiple of the “polarization quantum”, which in one dimension is just the electron charge. (In
higher dimensions, the polarization quantum is one electron charge per transverse unit cell.) Physically the ambiguity
of polarization corresponds to the following idea: given a system with a certain bulk unit cell, there is an ambiguity in
how that system is terminated and how much surface charge is at the boundary; adding an integer number of charges
to one allowed termination gives another allowed termination (cf. Resta). The Berry phase is not gauge-invariant,
but any fractional part it had in units of a is gauge-invariant. However, the above calculation suggests that, to obtain
a gauge-invariant quantity, we need to consider a two-dimensional crystal rather than a one-dimensional one. Then
integrating the Berry curvature, rather than the Berry connection, has to give a well-defined gauge-invariant quantity.

We will give a physical interpretation of γ in the next section as a one-dimensional polarization by relating changes
in γ to electrical currents. (A generalization of this Berry phase is remarkably useful for the theory of polarization
in real, three-dimensional materials.) In the next section we will understand how this one-dimensional example is
related to the two-dimensional integer quantum Hall effect. Historically the understanding of Berry phases in the
latter came first, in a paper by Thouless, Kohmoto, den Nijs, and Nightingale. They found that, when a lattice is put
in a commensurate magnetic field (one with rational flux per unit cell, in units of the flux quantum so that Bloch’s
theorem applies), each occupied band j contributes an integer

nj =
i

2π

∫
dkx dky

(
〈∂kxuj |∂kyuj〉 − 〈∂kyuj |∂kxuj〉

)
(6)

to the total Hall conductance:

σxy =
e2

h

∑
j

nj . (7)

Now we derive this topological quantity (the “Chern number”, expressed as an integral over the Berry flux, which
is the curl of the Berry connection Aj = i〈uj |∇kuj〉) for the case of one-dimensional polarization, then explain its
mathematical significance.

C. 1D polarization and 2D IQHE

We start with the question of one-dimensional polarization mentioned earlier. More precisely, we attempt to
compute the change in polarization by computing the integral of current through a bulk unit cell under an adiabatic
change:

∆P =

∫ 1

0

dλ
dP

dλ
=

∫ t1

t0

dt
dP

dλ

dλ

dt
=

∫ t1

t0

j(t) dt. (8)
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In writing this formula, we are assuming implicitly that there will be some definition of dP in terms of a parameter
λ of the bulk Hamiltonian. Our treatment will follow that of Resta, but with a few more mathematical details in the
derivation. (We write q for one-dimensional momentum and kx, ky for two-dimensional momenta in the following.)
We will use Bloch’s theorem in the following form: the periodic single-particle orbitals un(q, r) are eigenstates of

H(q, λ) =
1

2m
(p+ ~q)2 + V (λ)(r). (9)

The current operator is

j(q) = ev(q) =
ie

~
[H(q, λ), r] =

e

m
(p+ ~q) =

e

~
∂qH(q, λ). (10)

The current at any fixed λ in the ground state is zero, but changing λ adiabatically in time drives a current that
generates the change in polarization. To compute this current, we need to use the first correction to the adiabatic
theorem (cf. the quantum mechanics book of Messiah). Following Thouless, we choose locally a gauge in which the
Berry phase is zero (this can only be done locally and is only meaningful if we obtain a gauge-invariant answer for
the instantaneous current), and write for the many-body wavefunction

|ψ(t)〉 = exp

(
−(i/~)

∫ t

E0(t′) dt′
)|ψ0(t)〉+ i~

∑
j 6=0

|ψj(t)〉(Ej − E0)−1〈ψj(t)|ψ̇0(t)〉

 . (11)

Here Ei(t) are the local eigenvalues and |ψj(t)〉 a local basis of reference states. The first term is just the adiabatic

expression we derived before, but with the Berry phase eliminated with a phase rotation to ensure 〈ψ0(t)|ψ̇0(t)〉 = 0.
We want to use the above expression to write the expectation value of the current. The ground state must differ

from the excited state by a single action of the (one-body) current operator, which promotes one valence electron
(i.e., an electron in an occupied state) to a conduction electron. Using the one-particle states, we get

dP

dλ
= 2~e Im

∑
v,c

∫
dq

2π

〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉
Ec(q)− Ev(q)

. (12)

For example, we wrote

〈ψj(t)|ψ̇0(t)〉 =
∑
v,c

〈uc|∂λuv〉
dλ

dt
. (13)

This sum involves both valence and conduction states. For simplicity we assume a single valence state in the follow-
ing. We can rewrite the sum simply in terms of the valence state using the first-order time-independent perturbation
theory expression for the wavefunction change under a perturbation Hamiltonian H ′ = dq ∂qH:

|∂quj(q)〉 =
∑
j 6=j′
|uj′(q)〉

〈uj′(q)|∂qH(q, λ)|uj(q)〉
Ej(q)− Ej′(q)

. (14)

Using this and v(q) = 1
~∂qH(q, λ) we obtain

dP

dλ
= 2~e Im

∑
c

∫
dq

2π

〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉
Ec(q)− Ev(q)

= 2e Im

∫
dq

2π
〈∂quv(q)|∂λuv(q)〉. (15)

We can convert this to a change in polarization under a finite change in parameter λ:

∆P = 2e Im

∫ 1

0

dλ

∫
dq

2π
〈∂quv(q)|∂λuv(q)〉. (16)

The last expression is in two dimensions and involves the same type of integrand (a Berry flux) as in the 2D TKNN
formula (6). However, in the polarization case there does not need to be any periodicity in the parameter λ. If this
parameter is periodic, so that λ = 0 and λ = 1 describe the same system, then the total current run in a closed cycle
that returns to the original Hamiltonian must be an integer number of charges, consistent with quantization of the
TKNN integer in the IQHE.
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If we define polarization via the Berry connection,

P = ie

∫
dq

2π
〈uv(q)|∂quv(q)〉, (17)

so that its derivative with respect to λ will give the result above with the Berry flux, we note that a change of gauge
changes P by an integer multiple of the charge e. Only the fractional part of P is gauge-independent. The relationship
between polarization in 1D, which has an integer ambiguity, and the IQHE in 2D, which has an integer quantization,
is the simplest example of the relationship between Chern-Simons forms in odd dimension and Chern forms in even
dimension. We now turn to the mathematical properties of these differential forms, which in the case above (and
others to be discussed) came from the Berry phases of a band structure.

D. Interactions and disorder: the flux trick

One might worry whether the TKNN integer defined in equation (6) is specific to noninteracting electrons in perfect
crystals. An elegant way to generalize the definition physically, while keeping the same mathematical structure, was
developed by Niu, Thouless, and Wu. This definition also makes somewhat clearer, together with our polarization
calculation above, why this invariant should describe σxy. First, note that from the formula for the Bloch Hamiltonian
in the polarization calculation above, we can reinterpret the crystal momentum q as a parameter describing a flux
threaded through a unit cell of size a: the boundary conditions are periodic up to a phase eiqa = eieΦ/~c. We will
start by reinterpreting the noninteracting case in terms of such fluxes, then move to the interacting case.

The setup is loosely similar to the Laughlin argument for quantization in the IQHE. Consider adiabatically pumping
a flux Φx though one circle of a toroidal system, in the direction associated with the periodicity x→ x+ Lx, y → y.
The change in this flux in time generates an electric field pointing in the x̂ direction. Treating this flux as a parameter
of the crystal Hamiltonian, we compute the resulting change in ŷ polarization, which is related to the y current
density:

dPy
dt

= jy =
dPy
dΦx

dΦx
dt

=
dPy
dΦx

(cExLx). (18)

We are going to treat the polarization Py as an integral over y flux but keep Φx as a parameter. Then (cf. Ortiz and
Martin, 1994)

Py(Φx) =
ie

2π

∫
dΦy 〈u|∂Φyu〉 (19)

and we see that polarization now has units of charge per length, as expected. In particular, the polarization quantum
in the y direction is now one electronic charge per Lx. The last step to obtain the quantization is to assume that we
are justified in averaging jy over the flux:

〈jy〉 = 〈 dPy
dΦx
〉(cExLx)→ ∆Py

∆Φx
(cExLx), (20)

where ∆ means the change over a single flux quantum: ∆Φx = hc/e. So the averaged current is determined by how
many y polarization quanta change in the periodic adiabatic process of increasing the x flux by hc/e

〈jy〉 =
e

hc

ne

Lx
(cExLx) =

ne2

h
Ex. (21)

The integer n follows from noting that computing dPy/dΦx and then integrating dΦx gives just the expression for the
TKNN integer (6), now in terms of fluxes.

E. TKNN integers, Chern numbers, and homotopy

In this section we will give several different ways to understand the TKNN integer or Chern number described
above. First, a useful trick for many purposes is to define the Berry flux and first Chern number in a manifestly
gauge-invariant way, using projection operators. For the case of a single non-degenerate band, define Pj = |uj〉〈uj | at
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each point of the Brillouin zone. This projection operator is clearly invariant under U(1) transformations of uj . The
Chern number can be obtained as

nj =
i

2π

∫
Tr [dPj ∧ Pj dPj ] , (22)

where ∧ is the wedge product and dPj = ∂kxPj dkx + ∂kyPj dky is a differential form where the coefficients are
operators. (Note that the wedge product in the above formula acts only on dkx and dky.) It is a straightforward
exercise to verify that this reproduces the TKNN definition (6).

Then the generalization to degenerate bands, for example, is naturally studied by using the gauge- and basis-
invariant projection operator Pij = |ui〉〈ui| + |uj〉〈uj | onto the subspace spanned by |ui〉 and |uj〉: the index of this
operator gives the total Chern number of bands i and j. In general, when two bands come together, only their total
Chern number is defined. The total Chern number of all bands in a finite-dimensional band structure (i.e., a finite
number of bands) is argued to be zero below. Often one is interested in the total Chern number of all occupied bands
because this describes the integer quantum Hall effect through the TKNN formula; because of this zero sum rule, the
total Chern number of all unoccupied bands must be equal and opposite.

In the remainder of this section, we use a powerful homotopy argument of Avron, Seiler, and Simon to show
indirectly that there is one Chern number per band, but with a “zero sum rule” that all the Chern numbers add up
to zero. We will not calculate the Chern number directly, but rather the homotopy groups of Bloch Hamiltonians.
To get some intuition for the result, we first consider the example of a nondegenerate two-band band structure, then
give the general result, which is an application of the “exact sequence of a fibration” mentioned in the Introduction.

The Bloch Hamiltonian for a two-band nondegenerate band structure can be written in terms of the Pauli matrices
and the two-by-two identity as

H(kx, ky) = a0(kx, ky)1 + a1(kx, ky)σx + a2(kx, ky)σy + a3(kx, ky)σz. (23)

The nondegeneracy constraint is that a1, a2, and a3 are not all simultaneously zero. Now we first argue that a0 is
only a shift in the energy levels and has no topological significance, i.e., it can be smoothly taken to zero without a
phase transition. Similarly we can deform the other a functions to describe a unit vector on Z2: just as the punctured
plane R2 − {0, 0} can be taken to the circle, we are taking punctured three-space to the two-sphere via

(a1, a2, a3)→ (a1, a2, a3)√
a1

2 + a2
2 + a3

2
(24)

at each point in k-space.
Now we have a map from T 2 to S2. We need to use one somewhat deep fact: under some assumptions, if π1(M)

= 0 for some target space M , then maps from the torus T 2 →M are contractible to maps from the sphere S2 →M .
Intuitively this is because the images of the noncontractible circles of the torus, which make it different from the
sphere, can be contracted on M . By this logic, the two-band nondegenerate band structure in two dimensions is
characterized by a single integer, which can be viewed as the Chern number of the occupied band.

What is the Chern number, intuitively? For simplicity let’s consider maps from S2 to the non-degenerate two-band
Hamiltonians described above. One picture is in terms of π2(S2). A maybe more fundamental picture is that a
nonzero Chern number is an “obstruction” to globally defining wavefunctions, in the following sense. F , the first
Chern form, is a two-form. Let’s consider a constant nonzero F , which for the case S2 → S2 can be viewed as the
field of a monopole located at the center of the target sphere. Locally, it is possible to find wavefunctions giving a
vector potential A with F = dA, but not globally. ( There has to be a “Dirac string” passing through the surface
of the sphere somewhere.) In other words, states with nonzero Chern number have Chern forms that are nontrivial
elements of the second cohomology class: they are closed two-forms that are not globally exact.

The one subtle thing about this two-band model is that there is a nontrivial invariant in three spatial dimensions,
since π3(S2) = Z (the “Hopf invariant”). In other words, even if the Chern numbers for the three two-dimensional
planes in this three-dimensional structure are zero, there still can be an integer-valued invariant 2. This map is familiar
to physicists from the fact that the Pauli matrices can be used to map a normalized complex two-component spinor,
i.e., an element of S3, to a real unit vector, i.e., an element of S2: ni = z†σiz. This “Hopf map” is an example of
a map that cannot be deformed to the trivial (constant) map. The Hopf invariant does not generalize to more than
two bands, but what happens instead is quite remarkable.

2 The nature of this fourth invariant changes when the Chern numbers are nonzero, as shown by Pontryagin in 1941: it becomes an
element of a finite group rather than of the integers.
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Now we consider the case of a nondegenerate two-dimensional band structure with multiple bands. By the same
argument as in the two-band case, we would like to understand π1 and π2 of the target space Hn×n, nondegenerate
n× n Hermitian matrices. As before, we will find that π1 is zero so that maps from T 2 are equivalent to maps from
S2, but the latter will be quite nontrivial. We first diagonalize H at each point in k-space:

H(k) = U(k)D(k)U−1(k). (25)

Here U(k) is unitary and D(k) is real diagonal and nondegenerate. We can smoothly distort D everywhere in
the Brillouin zone to a reference matrix with eigenvalues 1, 2, . . . because of the nondegeneracy: if we plot the jth
eigenvalue of D as a function of kx and ky, then this distortion corresponds to smoothing out ripples in this plot to
obtain a constant plane.

The nontrivial topology is contained in U(k). The key is to note that U(k) in the above is ambiguous: right
multiplication by any diagonal unitary matrix, an element of DU(N), will give the same H(k). So we need to
understand the topology ofM = U(N)/DU(N) = SU(N)/SDU(N), where SDU(N) means diagonal unitary matrices
with determinant 1. We can compute π2 of this quotient by using the exact sequence of a fibration and the following
facts: π2(SU(N)) = π1(SU(N)) = 0 for N ≥ 2. These imply that π2(M) ∼= π1(SDU(N)) = Zn−1, i.e., n−1 copies of
the integers. This follows from viewing SDU(N) as N circles connected only by the requirement that the determinant
be 1. Similarly we obtain π1(M) = 0. We interpret these n − 1 integers that arise in homotopy theory as just the
Chern numbers of the bands, together with a constraint that the Chern numbers sum to zero.

F. Time-reversal invariance in Fermi systems

Now we jump to 2004-2005, when it was noted that imposing time-reversal symmetry in 2D electronic systems
leads to new topological invariants. While nonzero Chern numbers cannot be realized with time-reversal invariance,
the zero-Chern-number class gets subdivided into two pieces: “ordinary” insulators that do not in general have an
edge state, and a “quantum spin Hall effect” or “topological insulator” where a bulk topological invariant forces an
edge state. The topological invariant is not an integer here but rather a two-valued or Z2 invariant.

The idea that triggered this development started from considering two copies of the quantum Hall effect, one for
spin-up electrons and one for spin-down, with opposite effective magnetic fields for the two spins. This combination,
studied early on by Murakami, Nagaosa, Zhang, and others, is time-reversal invariant because acting with the time-
reversal operator T changes both the magnetic field direction and the spin. Note that in a model such as this, Sz is
a conserved quantum number even though SU(2) (spin-rotation invariance) is clearly broken, as up and down spins
behave differently. Heuristically, think of the spin-orbit coupling as arising from intra-atomic terms like L · S, and
consider specifically LzSz. For an electron of fixed spin, this coupling to the orbital motion described by Lz is just
like the coupling in a constant magnetic field, since the orbital motion Lz generates a magnetic dipole moment. In the
simplest case of a Chern number +1 state of up electrons and a Chern number −1 state of down electrons, the edge will
have counterpropagating modes: e.g., up-spin moves clockwise along the edge and down-spin moves counterclockwise.
This turns out not to be a bad caricature of the quantum spin Hall phase in a more realistic system: one can tell by
symmetry arguments that it will have no quantum Hall effect (i.e., αc = 0 in Ji = αcεijkEjBk), it will have a spin
Hall effect

J ij = αsεijkEk, (26)

where αc and αs are some numerical constants and J ij is a spin current (a current of angular momentum i in spatial

direction j 3 The appearance of the electric field rather than the magnetic field in the quantum spin Hall equation
results from the goal of having a potentially dissipationless current equation. If dissipation provides no “arrow of
time”, then both sides should transform in the same way under the time-reversal operation, which fixes the field on
the right side to be E rather than B.

As an example of this “two copies of the IQHE” generated by spin-orbit coupling, consider the model of graphene
introduced by Kane and Mele.(?) This is a tight-binding model for independent electrons on the honeycomb lattice
(Fig. 1). The spin-independent part of the Hamiltonian consists of a nearest-neighbor hopping, which alone would

3 There are some challenges that arise in trying to define a spin current in a realistic physical system, chiefly because spin is not a
conserved quantity. Spin currents are certainly real and measurable in various situations, but the fundamental definition we give of the
quantum spin Hall phase will actually be in terms of charge; “two-dimensional topological insulator” is a more precise description of
the phase.
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give a semimetallic spectrum with Dirac nodes at certain points in the 2D Brillouin zone, plus a staggered sublattice
potential whose effect is to introduce a gap:

H0 = t
∑
〈ij〉σ

c†iσcjσ + λv
∑
iσ

ξic
†
iσciσ. (27)

Here 〈ij〉 denotes nearest-neighbor pairs of sites, σ is a spin index, ξi alternates sign between sublattices of the
honeycomb, and t and λv are parameters.

The insulator created by increasing λv is an unremarkable band insulator. However, the symmetries of graphene
also permit an “intrinsic” spin-orbit coupling of the form

HSO = iλSO
∑

〈〈ij〉〉σ1σ2

νijc
†
iσ1
szσ1σ2

cjσ2 . (28)

Here νij = (2/
√

3)d̂1 × d̂2 = ±1, where i and j are next-nearest-neighbors and d̂1 and d̂2 are unit vectors along the
two bonds that connect i to j. Including this type of spin-orbit coupling alone would not be a realistic model. For
example, the Hamiltonian H0 +HSO conserves sz, the distinguished component of electron spin, and reduces for fixed
spin (up or down) to Haldane’s model.(?) Generic spin-orbit coupling in solids should not conserve any component
of electron spin.

Ly

Lx

d1
d2

ψeiφx

ψeiφx+iφyψeiφy

ψ

FIG. 1 (Color online) The honeycomb lattice on which the tight-binding Hamiltonian resides. For the two sites depicted, the
factor νij of equation (28) is νij = −1. The phases φx,y describe twisted boundary conditions that are used below to give a
pumping definition of the Z2 invariant.

This model with Sz conservation is mathematically treatable using the Chern number above, as it just reduces
to two copies of the IQHE. It is therefore not all that interesting in addition to not being very physical, because of
the requirement of Sz conservation. In particular, the stability of the phase is dependent on a subtle property of
spin-half particles (here we use the terms spin-half and Fermi interchangeably). The surprise is that the quantum
spin Hall phase survives, with interesting modifications, once we allow more realistic spin-orbit coupling, as long as
time-reversal symmetry remains unbroken.

The time-reversal operator T acts differently in Fermi and Bose systems, or more precisely in half-integer versus
integer spin systems. Kramers showed that the square of the time-reversal operator is connected to a 2π rotation,
which implies that

T 2 = (−1)2S , (29)

where S is the total spin quantum number of a state: half-integer-spin systems pick up a minus sign under two
time-reversal operations.

An immediate consequence of this is the existence of “Kramers pairs”: every eigenstate of a time-reversal-invariant
spin-half system is at least two-fold degenerate. We will argue this perturbatively, by showing that a time-reversal
invariant perturbation H ′ cannot mix members of a Kramers pair (a state ψ and its time-reversal conjugate φ = Tψ).
To see this, note that

〈Tψ|H ′|ψ〉 = 〈Tψ|H ′|T 2ψ〉 = −〈Tψ|H ′|ψ〉 = 0, (30)
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where in the first step we have used the antiunitarity of T and the time-reversal symmetry of H ′, the second step the
fact that T 2 = −1, and the last step is just to note that if x = −x, then x = 0.

Combining Kramers pairs with what is known about the edge state, we can say a bit about why a odd-even or Z2

invariant might be physical here. If there is only a single Kramers pair of edge states and we consider low-energy elastic
scattering, then a right-moving excitation can only backscatter into its time-reversal conjugate, which is forbidden
by the Kramers result above if the perturbation inducing scattering is time-reversal invariant. However, if we have
two Kramers pairs of edge modes, then a right-mover can back-scatter to the left-mover that is not its time-reversal
conjugate. This process will, in general, eliminate these two Kramers pairs from the low-energy theory.

Our general belief based on this argument is that a system with an even number of Kramers pairs will, under time-
reversal-invariant backscattering, localize in pairs down to zero Kramers pairs, while a system with an odd number
of Kramers pairs will wind up with a single stable Kramers pair. Additional support for this odd-even argument will
be provided by our next approach. We would like, rather than just trying to understand whether the edge is stable,
to predict from bulk properties whether the edge will have an even or odd number of Kramers pairs. Since deriving
the bulk-edge correspondence directly is quite difficult, what we will show is that starting from the bulk T -invariant
system, there are two topological classes. These correspond in the example above (of separated up- and down-spins)
to paired IQHE states with even or odd Chern number for one spin. Then the known connection between Chern
number and number of edge states is good evidence for the statements above about Kramers pairs of edge modes.

A direct Abelian Berry-phase approach for the 2D Z2 invariant is provided in the Appendix, along with an in-
troduction to Wess-Zumino terms in 1+1-dimensional field theory and a physical interpretation of the invariant in
terms of pumping cycles. The common aspect between these two is that in both cases the “physical” manifold (either
the 2-sphere in the WZ case, or the 2-torus in the QSHE case) is extended in a certain way, with the proviso that
the resulting physics must be independent of the precise nature of the extension. When we go to 3 dimensions in
the following lecture, it turns out that there is a very nice 3D non-Abelian Berry-phase expression for the 3D Z2

invariant; while in practice it is certainly no easier to compute than the original expression based on applying the 2D
invariant, it is much more elegant mathematically so we will focus in that. Actually, for practical calculations, a very
important simplification for the case of inversion symmetry (in both d = 2 and d = 3) was made by Fu and Kane:
the topological invariant is determined by the product of eigenvalues of the inversion operator at the 2d time-reversal
symmetric points of the Brillouin zone. For further details we refer the reader to their 2007 PRB.

G. Experimental status of 2D insulating systems

This completes our discussion of one- and two-dimensional insulating systems. The two-dimensional topological
insulator was observed by a transport measurement in (Hg,Cd)Te quantum wells (König et al., Science 2007). A
simplified description of this experiment is that it observed, in zero magnetic field, a two-terminal conductance 2e2/h,
consistent with the expected conductance e2/h for each edge if each edge has a single mode, with no spin degeneracy.
More recent work has observed some of the predicted spin transport signatures as well, although as expected the
amount of spin transported for a given applied voltage is not quantized, unlike the amount of charge.

In the next set of notes, we start with the three-dimensional topological insulator and its remarkable surface and
magnetoelectric properties. We then turn to metallic systems in order to understand another consequence of Berry
phases of Bloch electrons.

Topological invariants in 2D with time-reversal invariance

1. An interlude: Wess-Zumino terms in one-dimensional nonlinear σ-models

A mathematical strategy similar to what we will need for the QSHE was developed by Wess and Zumino in the
context of 1+1-dimensional field theory. Before, in the discussion of the Kosterlitz-Thouless transition, we discussed
the behavior of the U(1) nonlinear sigma model, i.e., with the action

S0 = −K
2

∫
R2

(∇φ)2. (31)

The direct generalization of this to a more complicated Lie group such as SU(N) is written as

S0 = − k

8π

∫
S2

K(g−1∂µg, g−1∂µg), (32)

where we have compactified the plane to the sphere, changed the prefactor, and written the interaction in terms of
the “Killing form” K on the Lie algebra associated with g. (This Killing form is a symmetric bilinear form that, in
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the U(1) case above, is just the identity matrix.) Unfortunately this action behaves quite differently from the U(1)
case: it does not describe a critical theory (in particle physics language, it develops a mass).

To fix this problem, Wess and Zumino wrote a term

SWZ = − 2πk

48π2

∫
B3

εµνλK
(
g−1∂µg,

[
g−1∂νg, g

−1∂λg
])

(33)

that is quite remarkable: even writing this term depends on being able to take an original configuration of g on the
sphere S2 and extend it in to the sphere’s interior B3. (We will not show here that this term accomplishes the desired
purpose, just that it is topologically well-defined.) At least one contraction into the ball exists because π2(G) = 0.
Different contractions exist because π3(G) = Z, and the coefficient of the second term is chosen so that, if k (the
“level” of the resulting Wess-Zumino-Witten theory) is an integer, the different topological classes differ by a multiple
of 2πi in the action, so that the path integral is independent of what contraction is chosen. The reason that π3(G) is
relevant here is that two different contractions into the interior B3 can be joined together at their common boundary
to form a 3-sphere, in the same way as two disks with the same boundary can be joined together to form the top and
bottom hemispheres of a 2-sphere.

2. Topological invariants in time-reversal-invariant Fermi systems

The main subtlety in finding a topological invariant for time-reversal-invariant band structures will be in keeping
track of the time-reversal requirements. We introduce Q as the space of time-reversal-invariant Bloch Hamiltonians.
This is a subset of the space of Bloch Hamiltonians with at most pairwise degeneracies (the generalization of the
nondegenerate case we described above; we need to allow pairwise degeneracies because bands come in Kramers-
degenerate pairs). In general, a T -invariant system need not have Bloch Hamiltonians in Q except at the four special
points where k = −k. The homotopy groups of Q follow from similar methods to those used above: π1 = π2 = π3 = 0,
π4 = Z. T -invariance requires an even number of bands 2n, so Q consists of 2n× 2n Hermitian matrices for which H
commutes with Θ, the representation of T in the Bloch Hilbert space:

ΘH(k)Θ−1 = H(−k). (34)

Our goal in this section is to give a geometric derivation of a formula, first obtained by Fu and Kane via a different
approach, for the Z2 topological invariant in terms of the Berry phase of Bloch functions:

D =
1

2π

[∮
∂(EBZ)

dk ·A −
∫
EBZ

d2kF

]
mod 2. (35)

The notation EBZ stands for Effective Brillouin Zone, (?) which describes one half of the Brillouin zone together with
appropriate boundary conditions. Since the BZ is a torus, the EBZ can be viewed as a cylinder, and its boundary
∂(EBZ) as two circles, as in Fig. 2(b). While F is gauge-invariant, A is not, and different (time-reversal-invariant)
gauges, in a sense made precise below, can change the boundary integral by an even amount. The formula (35) was
not the first definition of the two-dimensional Z2 invariant, as the original Kane-Mele paper gave a definition based
on counting of zeros of the “Pfaffian bundle” of wavefunctions. However, (35) is both easier to connect to the IQHE
and easier to implement numerically.

The way to understand this integral is as follows. Since the EBZ has boundaries, unlike the torus, there is no
obvious way to define Chern integers for it; put another way, the F integral above is not guaranteed to be an integer.
However, given a map from the EBZ to Bloch Hamiltonians, we can imitate the Wess-Zumino approach above and
consider “contracting” or “extending” the map to be one defined on the sphere (Fig. 3), by finding a smooth way
to take all elements on the boundary to some constant element Q0 ∈ Q. The geometric interpretation of the line
integrals of A in (35) is that these are the integrals of F over the boundaries, and the requirement on the gauge used
to define the two A integrals is that each extends smoothly in the associated cap. The condition on the cap is that
each vertical slice satisfy the same time-reversal invariance condition as an EBZ boundary; this means that a cap can
alternately be viewed as a way to smoothly deform the boundary to a constant, while maintaining the time-reversal
condition at each step.

The two mathematical steps, as in the Wess-Zumino term, are showing that such contractions always exist and that
the invariant D in (35) is invariant of which contraction we choose. The first is rather straightforward and follows from
π1(H) = π1(Q) = 0. The second step is more subtle and gives an understanding of why only a Z2 invariant or “Chern
parity” survives, rather than an integer-valued invariant as the IQHE. We can combine two different contractions of
the same boundary into a sphere, and the Chern number of each band pair on this sphere gives the difference between
the Chern numbers of the band pair obtained using the two contractions (Fig. 3).
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The next step is to show that the Chern number of any band pair on the sphere is even. To accomplish this, we note
that Chern number is a homotopy invariant and that it is possible to deform the Bloch Hamiltonians on the sphere so
that the equator is the constant element Q0 (here the equator came from the time-reversal-invariant elements at the
top and bottom of each allowed boundary circle.) The possibility of deforming the equator follows from π1(Q) = 0,
and the equivalence of different ways of deforming the equator follows from π2(Q) = 0. Then the sphere can be
separated into two spheres, related by time-reversal, and the Chern numbers of the two spheres are equal so that the
total Chern number is zero.

C

Γ

B

A

Γ

B

A

C

(a) (b)

-π/a π/a
-π/a

π/a

0

0

FIG. 2 (a) A two-dimensional Brillouin zone; note that any such Brillouin zone, including that for graphene, can be smoothly
deformed to a torus. The labeled points are time-reversal-invariant momenta. (b) The effective Brillouin zone (EBZ). The
horizontal lines on the boundary circles ∂(EBZ) connect time-reversal-conjugate points, where the Hamiltonians are related by
time reversal and so cannot be specified independently.
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FIG. 3 (a) Contracting the extended Brillouin zone to a sphere. (b) Two contractions can be combined to give a mapping
from the sphere, but this sphere has a special property: points in the northern hemisphere are conjugate under T to those in
the southern, in such a way that overall every band pair’s Chern number must be even.

The above argument establishes that the two values of the Z2 invariant are related to even or odd Chern number
of a band pair on half the Brillouin zone. Note that the lack of an integer-valued invariant means, for example, that
we can smoothly go from an Sz-conserved model with ν = 1 for spin ↑, ν = −1 for spin ↓ to a model with ν = ±3
by breaking Sz conservation in between. This can be viewed as justification for the physical argument given above
in terms of edge states annihilating in pairs, once we define the Z2 invariant for disordered systems in the following
section.

3. Pumping interpretation of Z2 invariant

We expect that, as for the IQHE, it should be possible to reinterpret the Z2 invariant as an invariant that describes
the response of a finite toroidal system to some perturbation. In the IQHE, the response is the amount of charge
that is pumped around one circle of the torus as a 2π flux (i.e., a flux hc/e) is pumped adiabatically through the
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other circle. 4 Here, the response will again be a pumped charge, but the cyclic process that pumps the chage is more
subtle.

Instead of inserting a 2π flux through a circle of the toroidal system, we insert a π flux, adiabatically; this is
consistent with the part of D in (35) that is obtained by integration over half the Brillouin zone. However, while a
π flux is compatible with T -invariance, it is physically distinct from zero flux, and hence this process is not a closed
cycle. We need to find some way to return the system to its initial conditions. We allow this return process to be
anything that does not close the gap, but require that the Hamiltonians in the return process not break time-reversal.
Since the forward process, insertion of a π flux, definitely breaks time-reversal, this means that the whole closed cycle
is a nontrivial loop in Hamiltonian space. The Z2 invariant then describes whether the charge pumped by this closed
cycle through the other circle of the torus is an odd or even multiple of the electron charge; while the precise charge
pumped depends on how the cycle is closed, the parity of the pumped charge (i.e., whether it is odd or even) does
not.

This time-reversal-invariant closure is one way to understand the physical origin of the A integrals in (35), although
here, by requiring a closed cycle, we have effectively closed the EBZ to a torus rather than a sphere. One weakness of
the above pumping definition, compared to the IQHE, is that obtaining the Z2 invariant depends on Fermi statistics,
so that the above pumping definition cannot be directly applied to the many-body wavefunction as in the IQHE case.
We will solve this problem later for the three-dimensional topological insulator by giving a pumping-like definition
that can be applied to the many-particle wavefunction.

Γ

B

A

C

A

C B

Stage I:
insert flux, breaking T

Γ

φx = 0 φx = π

Stage II:
complete the cycle

φy = 0

φy = π

FIG. 4 Graphical representation of charge pumping cycle for Chern parities. The first stage takes place as the flux φx increases
adiabatically from 0 to π. In the second stage the Hamiltonian at (φx = π, φy) is adiabatically transported through the space
of Hamiltonians to return to the Hamiltonian at (φx = 0, φy). The difference between the second stage and the first is that at
every step of the second stage, the Hamiltonians obey the time-reversal conditions required at φx = 0 or φx = π. The bold
lines indicate paths along which all Hamiltonians are time-reversal invariant, and the disk with horizontal lines indicates, as
before, how pairs of points in the second stage are related by time-reversal.

4 A previous pumping definition that involves a π-flux but considers pumping of “Z2” from one boundary to another of a large cylinder
was given by Fu and Kane.


