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I. TOPOLOGICAL PHASES I: THOULESS PHASES ARISING FROM BERRY PHASES, CONTINUED

We will give a very quick introduction to the band structure invariants that allowed generalization of the previous
discussion of topological insulators to three dimensions. However, most of our discussion of the three-dimensional
topological insulator will be in terms of emergent properties that are difficult to perceive directly from the bulk band
structure invariant.

A. 3D band structure invariants and topological insulators

We start by asking to what extent the two-dimensional integer quantum Hall effect can be generalized to three
dimensions. A generalization of the previous homotopy argument (from Avron, Seiler, and Simon, 1983) can be used
to show that there are three Chern numbers per band in three dimensions, associated with the xy, yz, and xz planes
of the Brillouin zone. A more physical way to view this is that a three-dimensional integer quantum Hall system
consists of a single Chern number and a reciprocal lattice vector that describes the “stacking” of integer quantum
Hall layers. The edge of this three-dimensional IQHE is quite interesting: it can form a two-dimensional chiral metal,
as the chiral modes from each IQHE combine and point in the same direction.

Consider the Brillouin zone of a three-dimensional time-reversal-invariant material. Our approach will be to build
on our understanding of the two-dimensional case: concentrating on a single band pair, there is a Z2 topological
invariant defined in the two-dimensional problem with time-reversal invariance. Taking the Brillouin zone to be a
torus, there are two inequivalent xy planes that are distinguished from others by the way time-reversal acts: the
kz = 0 and kz = ±π/a planes are taken to themselves by time-reversal (note that ±π/a are equivalent because of the
periodic boundary conditions). These special planes are essentially copies of the two-dimensional problem, and we
can label them by Z2 invariants z0 = ±1, z±1 = ±1, where +1 denotes “even Chern parity” or ordinary 2D insulator
and −1 denotes “odd Chern parity” or topological 2D insulator. Other xy planes are not constrained by time-reversal
and hence do not have to have a Z2 invariant.

The most interesting 3D topological insulator phase (the “strong topological insulator”) results when the z0 and
z±1 planes are in different 2D classes. This can occur if, moving in the z direction between these two planes, one has
a series of 2D problems that interpolate between ordinary and topological insulators by breaking time-reversal. We
will concentrate on this type of 3D topological insulator here. Another way to make a 3D topological insulator is to
stack 2D topological insulators, but considering the edge of such a system shows that it will not be very stable: since
two “odd” edges combine to make an “even” edge, which is unstable in the presence of T -invariant backscattering,
we call such a stacked system a “weak topological insulator”.

Above we found two xy planes with two-dimensional Z2 invariants. By the same logic, we could identify four other
such invariants x0, x±1, y0, y±1. However, not all six of these invariants are independent: some geometry (exercise)
shows that there are two relations, reducing the number of independent invariants to four:

x0x±1 = y0y±1 = z0z±1. (1)

(Sketch of geometry: to establish the first equality above, consider evaluating the Fu-Kane 2D formula on the four
EBZs described by the four invariants x0, x+1, y0, y+1. These define a torus, on whose interior the Chern two-form F
is well-defined. Arranging the four invariants so that all have the same orientation, the A terms drop out, and the F
integral vanishes as the torus can be shrunk to a loop. In other words, for some gauge choice the difference x0 − x+1

is equal to y0−y+1.) We can take these four invariants in three dimensions as (x0, y0, z0, x0x±1), where the first three
describe layered “weak” topological insulators, and the last describes the Alternately, the “axion electrodynamics” field
theory in the next subsection can be viewed as suggesting that there should be only one genuinely three-dimensional
Z2 invariant.

For example, the strong topological insulator cannot be realized in any model with Sz conservation, while, as
explained earlier, a useful example of the 2D topological insulator (a.k.a. “quantum spin Hall effect”) can be obtained
from combining IQHE phases of up and down electrons. The impossibility of making an STI with Sz conservation
follows from noting that all planes normal to z have the same Chern number, as Chern number is a topological
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invariant whether or not the plane is preserved by time-reversal. In particular, the kz = 0 and kz = ±π/a phases
have the same Chern number for up electrons, say, which means that these two planes are either both 2D ordinary or
2D topological insulators.

While the above argument is rigorous, it doesn’t give much insight into what sort of gapless surface states we should
expect at the surface of a strong topological insulator. The answer can be obtained by other means (some properties
can be found via the field-theory approach given in the next section): the spin-resolved surface Fermi surface encloses
an odd number of Dirac points. In the simplest case of a single Dirac point, believed to be realized in Bi2Se3, the
surface state can be pictured as “one-quarter of graphene.” Graphene, a single layer of carbon atoms that form a
honeycomb lattice, has two Dirac points and two spin states at each k; spin-orbit coupling is quite weak since carbon
is a relatively light element. The surface state of a three-dimensional topological insulator can have a single Dirac
point and a single spin state at each k. As in the edge of the 2D topological insulator, time-reversal invariance implies
that the spin state at k must be the T conjugate of the spin state at −k.

B. Axion electrodynamics, second Chern number, and magnetoelectric polarizability

The three-dimensional topological insulator turns out to be connected to a basic electromagnetic property of solids.
We know that in an insulating solid, Maxwell’s equations can be modified because the dielectric constant ε and mag-
netic permeability µ need not take their vacuum values. Another effect is that solids can generate the electromagnetic
term

∆LEM =
θe2

2πh
E ·B =

θe2

16πh
εαβγδFαβFγδ. (2)

This term describes a magnetoelectric polarizability: an applied electrical field generates a magnetic dipole, and vice
versa. An essential feature of the above “axion electrodynamics” theory (cf. Wilczek PRL 1987) is that, when the
axion field θ(, t) is constant, it plays no role in electrodynamics; this follows because θ couples to a total derivative,
εαβγδFαβFγδ = 2εαβγδ∂α(AβFγδ) (here we used that F is closed, i.e., dF = 0), and so does not modify the equations
of motion. However, the presence of the axion field can have profound consequences at surfaces and interfaces, where
gradients in θ(x) appear.

A bit of work shows that, at a surface where θ changes, there is a surface quantum Hall layer of magnitude

σxy =
e2(∆θ)

2πh
. (3)

(This can be obtained by moving the derivative from one of the A fields to act on θ, leading to a Chern-Simons term
for the EM field at the surface. The connection between Chern-Simons terms and the quantum Hall effect will be
a major subject of the last part of this course.) The magnetoelectric polarizability described above can be obtained
from these layers: for example, an applied electric field generates circulating surface currents, which in turn generate a
magnetic dipole moment. In a sense, σxy is what accumulates at surfaces because of the magnetoelectric polarizability,
in the same way as charge is what accumulates at surfaces because of ordinary polarization.

We are jumping ahead a bit in writing θ as an angle: we will see that, like polarization, θ is only well defined as a
bulk property modulo 2π (for an alternate picture on why θ is periodic, see Wilczek, 1987). The integer multiple of 2π
is only specified once we specify a particular way to make the boundary. How does this connect to the 3D topological
insulator? At first glance, θ = 0 in any time-reversal-invariant system, since θ → −θ under time-reversal. However,
since θ is periodic, θ = π also works, as −θ and θ are equivalent because of the periodicity, and is inequivalent to
θ = 0.

Here we will not give a microscopic derivation of how θ can be obtained, for a band structure of noninteracting
electrons, as an integral of the Chern-Simons form:

θ =
1

2π

∫
BZ

d3k εijk Tr[Ai∂jAk − i
2

3
AiAjAk], (4)

which can be done by imitating our previous derivation of the polarization formula; for details see either Qi, Hughes,
Zhang (2008) or Essin, Moore, Vanderbilt (2008). Instead we will focus on understanding the physical and mathe-
matical meaning of the Chern-Simons form that constitutes the integrand, chiefly by discussing analogies with our
previous treatment of polarization in one dimension and the IQHE in two dimensions. These analogies are summarized
in Table I.

Throughout this section,

Fij = ∂iAj − ∂jAi − i[Ai,Aj ] (5)
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Polarization Magnetoelectric
polarizability

dmin 1 3

Observable P = ∂〈H〉/∂E Mij = ∂〈H〉/∂Ei∂Bj

= δijθe
2/(2πh)

Quantum ∆P = eR/Ω ∆M = e2/h

Surface q = (P1 −P2) · n̂ σxy = (M1 −M2)

EM coupling P ·E ME ·B
CS form Ai εijk(AiFjk + iAiAjAk/3)

Chern form εij∂iAj εijklFijFkl

TABLE I Comparison of Berry-phase theories of polarization and magnetoelectric polarizability.

is the (generally non-Abelian) Berry curvature tensor (Aλ = i〈u|∂λ|u〉), and the trace and commutator refer to band
indices. We will understand the Chern-Simons form K = Tr[Ai∂jAk − i 23AiAjAk] above starting from the second
Chern form Tr[F ∧ F ]; the relationship between the two is that

dK = Tr[F ∧ F ], (6)

just as A is related to the first Chern form: d(TrA) = TrF . These relationships hold locally (this is known as
Poincare’s lemma, that given a closed form, it is locally an exact form) but not globally, unless the first or second
Chern form generates the trivial cohomology class. For example, we saw that the existence of a nonzero first Chern
number on the sphere prevented us from finding globally defined wavefunctions that would give an A with dA = F .
We are assuming in even writing the Chern-Simons formula for θ that the ordinary Chern numbers are zero, so that
an A can be defined in the 3D Brillouin zone. We would run into trouble if we assumed that an A could be defined in
the 4D Brillouin zone if the first or second Chern number were nonzero. Note that the electromagnetic action above
is just the second Chern form of the (Abelian) electromagnetic field.

The second Chern form is closed and hence generates an element of the de Rham cohomology we studied earlier.
There are higher Chern forms as well: the key is that symmetric polynomials can be used to construct closed forms,
by the antisymmetry properties of the exterior derivative. In physics, we typically keep the manifold fixed (in our
Brillouin zone examples, it is usually a torus Tn), and are interested in classifying different fiber bundles on the
manifold. In mathematical language, we want to use a properly normalized cohomology form to compute a homotopy
invariant (i.e., with respect to changing the connection, not the manifold). This is exactly what we did with the Chern
number in the IQHE, which was argued to compute certain integer-valued homotopy π2 invariants of nondegenerate
Hermitian matrices.

More precisely, we saw that the U(1) gauge-dependence of polarization was connected to the homotopy group
π1(U(1)) = Z, but that this is connected also to the existence of integer-valued Chern numbers, which we explained
in terms of π2. (These statements are not as inconsistent as they might seem, because our calculation of π2 came
down to π1 of the diagonal unitary group.) We can understand the second Chern and Chern-Simons form similarly,
using the homotopy invariants π3 (gauge transformation in d = 3) and π4 (quantized state in d = 4). The Chern-
Simons integral for θ given above, in the non-Abelian case, has a 2πn ambiguity under gauge transformations, and
this ambiguity counts the integer-valued homotopy invariant

π3(SU(N)) = Z, N ≥ 2. (7)

In other words, there are “large” (non-null-homotopic) gauge transformations. Note that the Abelian Chern-Simons
integral is completely gauge-invariant, consistent with π3(U(1)) = 0.

The quantized state in d = 4 was originally discussed in the context of time-reversal-symmetric systems. The set
Q has one integer-valued π4 invariant for each band pair, with a zero sum rule. These invariants survive even once T
is broken, but realizing the nonzero value requires that two bands touch somewhere in the four-dimensional Brillouin
zone. In this sense, the “four-dimensional quantum Hall effect” is a property of how pairs of bands interact with each
other, rather than of individual bands. Even if this 4D QHE is not directly measurable, it is mathematically connected
to the 3D magnetoelectric polarizability in the same way as 1D polarization and the 2D IQHE are connected.

The above Chern-Simons formula for θ works, in general, only for a noninteracting electron system. This is not
true for the first Chern formula for the IQHE, or the polarization formula, so what is different here? The key is to
remember that the 3D Chern formula behaves very differently in the Abelian and non-Abelian cases; for example, in
the Abelian case, θ is no longer periodic as the integral is fully gauge-invariant. Taking the ground state many-body
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wavefunction and inserting it into the Chern-Simons formula is not guaranteed to give the same result as using the
multiple one-particle wavefunctions.

However, we can give a many-body understanding of θ that clarifies the geometric reason for its periodicity even
in a many-particle system. Consider evaluating dP/dB by applying the 3D polarization formula

Pi = e

∫
BZ

d3k

(2π)3
TrAi . (8)

to a rectangular-prism unit cell. The minimum magnetic field normal to one of the faces that can be applied to the
cell without destroying the periodicity is one flux quantum per unit cell, or a field strength h/(eΩ), where Ω is the
area of that face. The ambiguity of polarization (8) in this direction is one charge per transverse unit cell area, i.e.,
e/Ω. Then the ambiguity in dP/dB is

∆
Px
Bx

=
e/Ω

h/(eΩ)
=
e2

h
= 2π

e2

2πh
. (9)

So the periodicity of 2π in θ is really a consequence of the geometry of polarization, and is independent of the
single-electron assumption that leads to the microscopic Chern-Simons formula.

C. Anomalous Hall effect and Karplus-Luttinger anomalous velocity

Our previous examples of Berry phases in solids have concentrated on insulators, but one of the most direct probes
of the Berry phase of Bloch electrons is found in metals that break time-reversal symmetry. The breaking of T allows
a nonzero transverse conductivity σxy to exist along with the metallic diagonal conductivity σxx. This “anomalous
Hall effect” (AHE) can originate from several different microscopic processes. Here we will concentrate on the intrinsic
AHE that results from Berry phases of a time-reversal-breaking band structure when the Fermi level is in the middle
of a band.

Remarkably, the AHE originates from a term in the semiclassical equations of motion that is neglected in almost
all textbooks. This term was first obtained by Karplus and Luttinger, but as this took place well before the modern
idea of Berry phases, their results were not universally accepted. We will present a modern derivation of the Karplus-
Luttinger term using the same idea as in our polarization calculation: trying to “gauge away” the Berry phase leads
to a gauge-invariant physical effect. We will derive in this process the zero-B-field limit of the standard semiclassical
equations of motion in, e.g., Ashcroft and Mermin,

~k̇ = eE + ev ×B
~v = ∇kεn(k) + . . . . (10)

where . . . indicate the Karplus-Luttinger term that we seek.
In class, we derived this term for an applied electric field in the form

~v = ∇kεnk− eE× (∇k ×A(n)), (11)

where A(n) is the Berry vector potential of band n. The physical interpretation is fairly straightforward once we recall
that our polarization calculation already showed that A can be connected to the spatial distribution of the electron.
As an electron wavepacket moves in k-space under the influence of an applied field, there are two contributions to its
spatial velocity. The Karplus-Luttinger contribution describes how a change in k induces a change in the real-space
location because the Bloch states are changing; the first term describes how a fixed wavepacket of Bloch states still
describes a moving particle. A minor note is that the present author finds it highly non-trivial to explain how exactly
the above term leads to a Hall effect once disorder is present; there are additional contributions that are not very
easy to disentangle. A recent Reviews of Modern Physics by Nagaosa et al. explains the current state of knowledge
in the field.


