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This is a preliminary version of the lecture notes. Comments,
corrections and feedback are welcome.

1 Entanglement spectrum and entanglement en-
tropy

As a first step, we discuss the concept of entanglement spectroscopy in some
simple cases. We also briefly cover the definition and the relevant properties
of the entanglement entropy. We introduce the Li-Haldane conjecture in the
case of the AKLT spin chain. We discuss the important situation where the
number of reduced density matrix non-zero eigenvalues is massively reduced.
In particular, we show the relation between the latter property and the
matrix product state representation.

1.1 Definitions

Let consider a generic n-body quantum state |Ψ〉 that can be decomposed
on the orthonormal basis {|λ〉}. We now assume that this basis can be
written as the tensor product of two orthonormal basis {|µA〉} and {|µB〉}
i.e. {|λ〉 = |µA〉 ⊗ |µB〉}, providing a natural bipartition of the system into
A and B. The decomposition of the state |Ψ〉 reads

|Ψ〉 =
∑
µA,µB

cµA,µB |µA〉 ⊗ |µB〉 (1)

The entanglement matrix M is defined such that its matrix elements are
given by MµA,µB = cµA,µB . The size of M is given by the dimension of
the subspaces A and B that we denote respectively dimA and dimB. Note
that we do not assume that dimA = dimB, and thus M is generically a
rectangular matrix. One can perform a singular value decomposition (SVD)
of M . The SVD allows to write a rectangular matrix

M = UDV † (2)

where U is a dimA ×min (dimA, dimB) matrix which satisfies U †U = 1 (i.e.
has orthonormalized columns), V is a dimB×min (dimA,dimB) matrix which
satisfies V V † = 1 (i.e. has orthonormalized rows). D is a diagonal square
of dimension min (dimA,dimB) where all entries are non-negative and can
be expressed as {e−ξi/2} .

2



Using the SVD, one can derive the Schmidt decomposition of |Ψ〉

|Ψ〉 =
∑
i

e−ξi/2 |A : i〉 ⊗ |B : i〉 (3)

where

|A : i〉 =
∑
µA

U †i,µA |µA〉 (4)

and |B : i〉 =
∑
µB

V †i,µB |µB〉 (5)

To be a Schmidt decomposition, the states |A : i〉 and |B : i〉 have to obey
〈A : i|A : j〉 = 〈B : i|B : j〉 = δi,j . This property is trivially verified using
the identities on U and V . The Schmidt decomposition provides a nice and
numerically efficient way to compute the spectrum of the reduced density
matrix. Consider the density matrix of the pure state ρ = |Ψ〉 〈Ψ|, we com-
pute the reduced density matrix of A by tracing out the degree of freedom
related to B, i.e. ρA = TrBρ. Using Eq. 3, we deduce that

ρA =
∑
i

e−ξi |A : i〉 〈A : i| (6)

Thus the spectrum of ρA can be obtained from the coefficient of the Schmidt
decomposition or the SVD of the entanglement matrix and is given by the
set {e−ξi}. From a numerical perspective, getting the spectrum of ρA is
more accurate using the SVD of M than a brute force calculation of ρA in
the {|µA〉} basis followed by its diagonalization. In a similar way, we can
obtain the reduced density matrix of B

ρB = TrAρ =
∑
i

e−ξi |B : i〉 〈B : i| (7)

Note that ρA and ρB have the same spectrum. While these two square
matrices might have different dimensions (respectively dimA and dimB),
they both have the same number of non-zero eigenvalues. This number has
to be lower than or equal to min (dimA,dimB). Thus studying the properties
of ρA for various partitions (i.e. choices of A and B) can be restricted to
the cases where dimA ≤ dimB.

With these tools and properties, we can now define the entanglement
spectrum. The latter corresponds to the set {ξi}, the logarithm of the
reduced density matrix eigenvalues. The key idea of the original article of
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Li and Haldane[1] was not only to look at this whole spectrum, but at a
specific subset of these values (or a block of ρA) with well defined quantum
numbers. Assume an operator O that can be decomposed as OA+OB where
OA (resp. OB) only acts on the A (resp. B) subspace. One can think about
O as the projection of the spin operator or the momentum. If [O, ρ] = 0,
we also have 0 = TrB[OA, ρ] + TrB[OB, ρ] = [OA,TrBρ] = [OA, ρA] as the
trace over the B degrees of freedom of a commutator operator in the B part
vanishes. If |Ψ〉 is an eigenstate of O, then the latter commutes with ρ. We
can simultaneously diagonalize ρA and OA ,and label the {ξi} according to
the quantum number of OA.

1.2 A simple example: Two spin-1
2

To exemplify the previous notations and concepts, we consider a system of
two spin-12 as depicted in Fig. 1a. Any state |Ψ〉 can be decomposed onto
the four basis states:

|Ψ〉 = c↑↑ |↑↑〉+ c↑↓ |↑↓〉+ c↓↑ |↓↑〉+ c↓↓ |↓↓〉 (8)

A natural way to cut this system into two parts consists of the A (resp.
B) part being the left (resp. right) spin. The entanglement matrix is given
by

M =

|B :↑〉 |B :↓〉(
c↑↑ c↑↓
c↓↑ c↓↓

)
|A :↑〉
|A :↓〉

(9)

where we have explicitly written which states were associated with each row
and column of M . We consider three examples: A product state |Ψ1〉 = |↑↑〉,
a maximally entangled state |Ψ2〉 = 1√

2
(|↑↓〉 − |↓↑〉) and a generic entangled

state |Ψ3〉 = 1
2 |↑↓〉 +

√
3
2 |↓↑〉. The entanglement matrices for these three

states are

M1 =

(
1 0
0 0

)
, M2 =

(
0 1√

2

− 1√
2

0

)
, M3 =

(
0 1

2√
3
2 0

)
(10)

Performing the SVD on the first state |Ψ1〉 is trivial: Being a product
state, it is already written as a Schmidt decomposition. For |Ψ2〉, we can do
the SVD
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Figure 1: From left to right: (a) schematic picture of the two spin-12 system.
(b) Entanglement spectrum for the state |Ψ1〉 = |↑↑〉. (c) Entanglement
spectrum for the state |Ψ2〉 = 1√

2
(|↑↓〉 − |↓↑〉). (d) Entanglement spectrum

for the state |Ψ3〉 = 1
2 |↑↓〉+

√
3
2 |↓↑〉.
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M2 =

(
1 0
0 1

)( 1√
2

0

0 1√
2

)(
0 −1
1 0

)
(11)

such that the Schmidt decomposition is

|Ψ2〉 =
1√
2

(+ |↑〉)⊗ (+ |↓〉) (12)

+
1√
2

(+ |↓〉)⊗ (− |↑〉)

S similar calculation can be performed for |Ψ3〉.
The projection of the total spin along the z axis Sz is the sum of individ-

ual components Sz,A and Sz,B. Thus, when performing the cut into the two
parts A and B, Sz,A is a good quantum number that can be used to label
the eigenvalues of the entanglement spectrum according to the discussion
in Sec. 1.1. The entanglement spectra for the three states |Ψ1〉, |Ψ2〉 and
|Ψ3〉 are shown in Figs. 1b-d. For the product state |Ψ1〉, there is a single
level appearing since the reduced density matrix has a single non-zero eigen-
value. For the two other examples, there are two levels, each with a given
Sz,A value. The calculation of the entanglement entropy, which is a mea-
sure of the entanglement, directly tells that |Ψ1〉 is a product state. We can
derive the same conclusion from the number of levels in the entanglement
spectrum. While this example is rather a trivial result obtained from the
entanglement spectrum, it stresses one of strong points of this technique.
Some properties of the states can be deduced just by counting the non-zero
eigenvalues of reduced density matrix.

1.3 Entanglement entropy

They are several ways to quantify the entanglement between two parts of
a system and there is an extensive literature on this topic (see Ref. [2] for
an extensive review). The goal of these lectures is not to give a detailed
introduction to entanglement entropies. So we will restrict to a few useful
examples in the context of topological phases. Perhaps the most common
measure of entanglement is the Von Neumann entanglement entropy

SA = −TrA [ρA ln ρA] (13)
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From a practical point of view, the calculation of the Von Neumann en-
tanglement entropy can be easily obtained once the Schmidt decomposition
or the spectrum of the reduced density matrix has been obtained.

SA = −
∑

i λi lnλi =
∑
i

ξie
−ξi (14)

Similarly, we can define the entanglement entropy for the B part of
the system SB = −TrB [ρB ln ρB]. Using Eq. 7, we immediately see that
SA = SB. If A and B are not entangled (i.e. |Ψ〉 = |ΨA〉 ⊗ |ΨB〉), we get
SA = 0. For the full system A+B, the entanglement entropy is also zero. As
a consequence, we get in general that SA + SB 6= SA+B (the entanglement
entropy is actually strongly subadditive)

We will now turn to the entanglement entropy of some specific systems.
In many situations, it is useful to look at the case of a random state. Espe-
cially for people interested in numerical simulations, it is always a good idea
to compare with what a random output would give. For example, consider
the calculation of the overlap (the simplest way to compare two wavefunc-
tions). Let’s take two random states |Ψ1〉 and |Ψ2〉 defined in a Hilbert
space of dimension D. Then the average overlap | 〈Ψ1|Ψ2〉 |2 ' 1

D . This
result gives a simple bound for what is a bad overlap in finite systems (note
that one should not cheat and define D as the dimension of the Hilbert space
with all the symmetries the system has).

For the entanglement entropy, we remind the notations dimA for the
dimension of the Hilbert associated to the A part and dimB for the dimension
of the Hilbert space of the B part. In the limit dimB ≥ dimA � 1, it was
shown[3] that

SA ' ln (dimA)− dimA

2 dimB
(15)

In particular when dimB � dimA � 1, we obtain that SA ' ln (dimA).

To get a more physical picture of this foumla, we can consider that the
system is made of spin-12 , VA spin-12 for A and VB spin-12 for B. We get
for the Hilbert space dimensions dimA = 2VA and dimB = 2VB , leading
to SA ' VA ln 2. Thus for a random state, the entanglement entropy is
proportional to the volume of the subsystem A, meaning the entanglement
entropy obeys a volume law.

We can now move to the case of gapped phases. We note η the correlation
length. We consider a geometrical bipartition of the system into A and B
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Figure 2: A schematic description of the bipartite geometrical partition for
a one dimensional system (a) and for a two dimensional system (b). The
righmost panel (c) illustrates the small region around the boundary between
A and B (with a thickness of the order of the correlation length η) that is
relevant in the entanglement entropy when considering a gapped phase.

as depicted in Fig. 2. For one dimensional gapped systems, if the size of A
in large enough compared to η, the entanglement entropy does not depend
on the length VA, i. e. SA is constant. This statement can be proved and
an upper bound on the constant can be found[4].

For higher dimensional systems, it is conjectured that the entanglement
entropy satisfies

SA ' αL (16)

L � η denotes the area of the surface that separates A from B and α
is a constant. Thus the entanglement entropy for a gapped system satisfies
an area law (as opposed to the volume law of the random state). In two
dimension, L is just the perimeter of the boundary between A and B (see
Fig. 2b). Here we should make two remarks. First one dimensional gapped
systems also obey the area law (just set L to 1, the boundary being just a
point). Second, this is a major difference with a random state where one gets
a volume law for the entanglement entropy. Intuitively, if one has a finite
correlation length, we expect that only the region around the boundary
between A and B, whose thickness is of the order of a few η’s (as shown in
Fig. 2c) should matter in the entanglement between A and B.

For two dimensional topological phases, we can go beyond the area law
contribution. Refs. [5] and [6] showed that the first correction to this area
law is a constant term γ

SA ∼ αL − γ (17)

While α is non-universal, this is not the case the sub-leading term γ.
This latest is called the topological entanglement entropy: It is a constant
for a given topologically ordered phase
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γ = ln

(
D
da

)
(18)

For a given type of excitations a, the quantum dimension da defines
how the Hilbert space dimension exponentially increases with the number
of such excitations. Each type of excitations corresponds to a topological
sector. Abelian excitations have a quantum dimension equal to 1 while
non-abelian ones have da > 1. The total quantum dimension is given by
D =

√∑
a d

2
a. These quantum dimensions characterize the topological field

theory describing the phase and thus the nature of the system excitations.
Note that in Eq. 18, the a of the da term corresponds to the topological
sector of the wavefunction |Ψ〉 whose entanglement entropy is computed.

The topological entanglement entropy appears as a way to characterize
the topological order of a phase. However, its practical calculation depends
on scaling arguments, which might be hard to obtain to sufficient accuracy
from numerical calculations[7, 8]. Moreover, it does not uniquely determine
the topological order in the state. For that reason, it is interesting to look
at the full spectrum of the reduced density matrix and not to reduce it to a
single number.
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