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1 Lecture 2

Let us give a couple of concrete examples of SRE topological phases of bosons/spins.
These are necessarily interacting - unlike free fermions, there is no ‘band’ pic-
ture here. Later, we will see how they combine with the free fermion topological
phases, in particular the Integer Quantum Hall effect, to extend the classifica-
tion from a single integer to a pair of integers.

1.1 SRE phase of bosons in d=2

Let us consider a system of two species of bosons (A and B say these are two
species of atoms in an optical lattice), whose numbers are individually con-
served. By analogy with the 1D example, we want to find a disordered phase
that respects these symmetries, and can be obtained by condensing a vortex
combined with a charge. In particular, say we begin in the superfluid state of
the ‘A’ bosons. We want to exit it by condensing vortices (and anti vortices).
However, in order to avoid reaching the regular Mott insulator, we will bind a
+1 charge of ‘B’ boson to this vortex (and -1 charge on the anti vortex) before
condensing them. We will show that this gives rise to a SRE topological phase.
The phase will have gapless edge state protected by symmetry. We will imple-
ment this in two ways (i) by a coupled wire construction and (ii) by writing
down an effective field theory.

1.1.1 Coupled Wire Construction

Consider an array of wires indexed by i. Species A (B) bosons are placed on
the even (odd) wires. Hence they only hop between even or between odd sites.
The field theory for a single chain takes the form

H = J(∂xφ)2 + U(∂xθ)
2 (1)
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where φ is the boson phase and θ is defined as

∂xθ(x) = 2πn(x)

where n is the particle density. Using the standard density-phase commutation
relation we have [∂xθ(x), φ(x′)] = −2πiδ(x − x′). This can be integrated to
give:

[θ(x), φ(x′)] = −πiSign(x− x′) (2)

where Sign(x) = ±1 for x > 0 (x < 0).
Exercise: Show that this commutation relation is symmetric on interchang-

ing the fields θ ↔ φ .
Normally, when the bosons are at commensurate filling one also has a vortex

tunneling operators Hv = −
∑
n λn cos(nθ). When these are relevant, a Mott

insulator results - for example when − cos θ is large, the field is pinned at θ = 0,
which implies that the density is uniform as in a Mott state. An excitation is a
soliton, that is θ(x � 0) → 0 while θ(x � 0) → 2π. This costs a finite energy
which is the gap to particle excitations in the Mott state.

However, here we will be interested in a different type of vortex condensate,
one that binds charge. To this end consider building a 2D system from coupling
1D systems (tubes) together. We will assume that on alternate tubes we have
bosons of species the two different species, thus on the even numbered tubes
2i we have A and on the odd 2i + 1 we have B. In the absence of interchain
coupling w shave the decoupled Luttinger Liquid Hamiltonian:

H0 = K
∑
i

[
(∂xθi)

2 + (∂xφi)
2
]

(3)

and
[θj(x), φk(x′)] = −iπδj,kδ(x− x′) (4)

We ignore the effect of conventional vortices. Let us instead attempt to
condense vortices of the ‘A’ bosons with B charge and vice versa. We will do
this by allowing the composite objects to ‘hop’, which will lower their energy
and make them eventually ‘Bose condense’. Of course, since this is a vortex
condensate we are led to an insulator as elaborated previously. We will see that
this is an exotic insulator.

Note, the vortices of the ‘A’ (blue) bosons naturally live in the centers of
plaquettes of the sites available to ‘A’. This happens to be on the ‘B’ tubes as
shown by the blue cross in the figure. Hence, if we hop a vortex from one of the
blue crosses to the adjacent one, this can be represented as a space-time event
on tube i = 2, represented as eiθ2 . However, we also simultaneously want to hop
bosons ‘B’ and we have arranged for their lattices sites to coincide with the loca-
tion of the ‘B’ vortices. This combined process is then written as: ei(−φ1+φ3+θ2).
The reverse process binds an anti-vortex to a ‘hole’: ei(+φ1−φ3−θ2) and taken to
gather this leads to the set of terms:

Hint = −λ
∑
i

cos(φi−1 − θi − φi+1) (5)

2
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Figure 1: Coupled wire construction of bosonic topological phase. ‘A’ (‘B’)
bosons, that live on the even (odd) numbered tubes. Vortices of one species
are bound to bosons of the opposite species and their tunneling is shown by
the arrows. Thes processes are shown to commute and gap the bulk, but leave
behind an topological edge state.
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First we note that these terms all commute with one another, for example,
if we denote θ̃i = θi + (φi+1 − φi−1), then any two terms commute:[

θ̃i(x), θ̃j

(
x′)] = 0

Exercise: Calculate the commutator of a pair of fields Φl,m and Φl′,m′ where
Φl,m =

∑
i(liφi +miθi). Use this to prove the result above.

Thus all of these can be simultaneously satisfied. If we have periodic bound-
ary conditions, then there is a unique ground state rather like pinning the θ
fields gives a unique Mott insulating state. The same count of variables leads to
a unique state in this case. However, interesting edge states appear if we have
an open slab as in the Figure 1. Let us focus on the left edge. Clearly we are
missing a cosine pinning field for θ̃0. This means that the first non vanishing
cosine terms are θ̃1 = −φ0 + θ1 + φ2 and θ̃2 = −φ1 + θ2 + φ3. An field that
commutes with both these is Φ = φ0. However, there is also a conjugate field we
require to define the edge dynamics. In an isolated chain this would have been
θ0 However, here this does not commute with one of the first cosine. It can be
rectified by adding Θ = θ0+φ1, which commute with all the cosines, and has the
standard Luttinger liquid commutator with Φ: [Θ(x), Φ(x′)] = −iπδ(x − x′).
Hence we have a gapless edge mode - which is described by the usual Luttinger
liquid theory. However, there is an important difference between this Luttinger
liquid at the edge and one that can be realized in purely 1D. It is impossible
to gap this edge without breaking one of the symmetries, which happens to be
number conservation of the two boson species. This is an internal symmetry
- and in a purely 1D system it is always possible to find a gapped state that
preserves all internal symmetries - we just combine degrees of freedom till they
transform in a trivial way under the symmetry and condense them. However,
this is not possible at the edge - one cannot condense Φ since it is charged
under the U(1) symmetry that protects ‘A’ particle conservation, and similarly
we cannot introduce a cosine of the Θ field since it is charged under the other
U(1). This is an indication that it is a topological phases - we will see this also
implies a quantized Hall conductance.

1.1.2 Effective Field Theory

Let us write down an effective theory to describe a fluid built out of boson-
vortex composites. The ‘A’ particles acquire a phase of 2π on circling vortices,
hence the effect go vortices can be modeled by a vector potential whose curl is
centered at the vortex locations: ∂xay−∂yax = 2π

∑
j n

v
j δ(r−rvj ), where (nvj , r

v
j )

represent the strength and location of the vortices. This vector potential will
couple minimally to the current L = ~jA ·~a, where the vectors are two-vectors. A
rewriting o this formalism to include motion of vortices results in the following
generalization to the three current jµ = (ρ, jx, jy) , and three gauge potential
aµ = (a0, ax, ay). Also, since we assume the vortices are bound to the bosons
‘B’ we can rewrite the equation for a as:

εµνλ∂νa
B
λ = 2πjµB (6)
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where we have introduced a superscript ‘B’ for the vector potential. At the
same time we can utilize the continuity equation for the current jA, ∂µj

µ
A = 0

to write:
εµνλ∂νa

A
λ = 2πjµA (7)

In order to keep track of the charge density of ‘A’ and ‘B’ bosons, it is useful to
introduce external vector potentials A(A,B) that couple to the currents of the
‘A’ and ‘B’ bosons. This leads to our final topological Lagrangian:

Ltopo =
εµνλ

2π

(
aAµ ∂νa

B
λ +AAµ ∂νa

A
λ +ABµ ∂νa

B
λ

)
(8)

Ztopo[AA, AB ] = eiStopo =

∫
DaADaBei

∫
dxdydtLtopo (9)

First, we would like to establish that this describes a phase with short range
entanglement. Note, the mutual phases involved are all 2π implying the absence
of fractional statistics. One can also compute the ground state degeneracy on
the torus - this turns out to be directly computable from this theory - if we
write

L =
KIJ

4π
εµνλaIµ∂νa

J
λ

, the ground state degeneracy is |detK|. In this case K = σx, and there is a
unique ground state.

Given that it is a SRE phase, we can deduce two important consequences
from this theory- the first is regarding edge states, which can be shown to be
equivalent to that derived before, and the quantized Hall conductivity. The
latter is obtained by integrating out the a fields to obtain an action purely in
terms of the external probe fields A. The current is then defined as jA = δS

δAA

where Z = eiS . A gaussian integration of Eqn. 9 yields:

Stopo = −
∫
dxdydt

εµνλ

2π
AAµ ∂νA

B
λ (10)

thus we have:

jµA = − 1

2π
εµνλ∂νA

B
λ (11)

If we consider the spatial components of this equation we find: jxA = 1
2πE

y
B ,

where EB is the electric field applied on species ‘B’. Thus we have a crossed
response Hall conductivity σABxy = 1

2π , which , replacing chargeQa for the bosons

and h̄ gives σABxy = QAQB

h .
We would like to apply these insights to electronic systems, where one may

combine pairs of electrons to form Cooper pairs with charge Q = 2e. However,
in that case there is a single conservation law. Topological phases with a single
U(1) can be described by the field theory above 9 , if we assume that the
two species of bosons can tunnel into one another and collapse the combined
U(1)× U(1) symmetry into a single common U(1). This amounts to replacing
the pair of external vector potentials by a single one and the resting topological
response theory is:
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Stopo = −
∫
dxdydt

εµνλ

2π
Aµ∂νAλ (12)

Now, differentiating with respect to the vector potential we get two contributions
and hence: jµ = 2

2π ε
µνλ∂νAλ which implies a Hall conductivity, in units of the

boson charge σxy = 2Q
2

h . This is the Bosonic Integer Quantum Hall (BIQH)
phase. Somewhat surprisingly, its Hall conductance is always an even integer.
Potential realization of this phase in bilayer systems of bosons in the lowest
Landau level with net filling ν = 2 have been discussed in recent numerical
work 1.

Note we have assumed commensurate filling to admit an insulator. Also,
these models are not exactly soluble in the same way that the previous models
were - for other approaches to construct models in this phase see 2 .

1.1.3 Implications for Interacting Quantum Hall State of Electrons:

It is well known that free fermion IQH states have a quantized Hall conductance

σxy = n e
2

h . At the same time, they have a quantized thermal hall effect
κxy

T =

c
π2k2B
3h where c = n. The latter simply counts the difference between the number

of right moving and left moving edge states. This equality is an expression of
the Wiedemann Franz law that related thermal and electrical conductivity for
weakly interacting electrons. This leads to the familiar integer classification of
IQH Z. How is this modified in the presence of interactions? We will continue
to assume short range entanglement - so that fractional quantum Hall states
are excluded from our discussion. It has long been known that n must remain
an integer if charge is to remain unfractionalized. However, the equality n = c
can be modified. In fact, if we assume the electrons can combine into Cooper

pairs which form the BIQH state, the latter has Hall conductance σxy = 8 e
2

h
but κxy = 0. Thus we can have n − c = 8m. Indeed this implies that the
classification of interacting quantum Hall states of electrons with SRE is Z ×Z
at least. Note, this also predicts a phase where n = 0 but c = 8. This can be
achieved by combining an n = 8 free fermion quantum Hall state with a BIQH
state of Cooper pairs to cancel the electrical Hall conductance. The remaining
thermal Hall conductance is c = 8. It can be shown that a π flux inserted in
this state has trivial statistics and can be condensed - which implies that all
electrons are confined into bosonic particles without disturbing the topological
response of this phase. Alternately, one can show that neutral bosons with short
range interaction can lead to a topological phase with chiral edge states, if they
appear in multiples of eight. Indeed one can write down a multi component
chern simons theory to describe this topological phase of neutral bosons, in
terms of a K matrix as described in detail below.

A phase without topological order is characterized by a symmetric K matrix
with |det K| = 1. A chiral state in 2 + 1-D requires the signature (n+, n−) of

1See arXiv:1305.0298, arXiv:1304.5716, arXiv:1304.7553
2See S. Gerdatis and O. Motrunich, arXiv:1302.1436 (in particular, Appendix C)
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its K matrix to satisfy that n+ 6= n−. We therefore seek a K matrix with the
following properties (1) |det K| = 1 (2) the diagonal elements KI,I are all even
integers so that all excitations are bosons and (3) a maximally chiral phases,
where all the edge states propagate in a single direction. Then, all eigenvalues of
K must have the same sign (say positive), so K is a positive definite symmetric
unimodular matrix.

It is helpful to map the problem of finding such a K to the following crystallo-
graphic problem. Diagonalizing K and multiplying each normalized eigenvector
by the square root of its eigenvalue one obtains a set of primitive lattice vectors
eI such that KIJ = eI ·eJ . The inner product of a pair of vectors lIeI and l′IeI

are given by l′IKIJ lJ , while the volume of the unit cell is given by [DetK]
1/2

.
The latter can be seen by writing the components of the vectors as a square
matrix: [k]aI = [eI ]a. Then Detk is the volume of the unit cell. However,
KIJ =

∑
a kaIkaJ = (kTk)IJ . Thus DetK = [Detk]2.

Thus, for a phase without topological order, we require the volume of the
lattice unit cell to be unity [Detk] = 1 (unimodular lattice). Furthermore, for
a bosonic state, we need that all lattice vectors have even length lIKIJ lJ =
even integer, since the K matrix has even diagonal entries (even lattice). It is
known that the minimum dimension this can occur in is eight. In fact, the root
lattice of the exceptional Lie group E8 is the smallest dimensional unimodular,
even lattice3. Such lattices only occur in dimensions that are a multiple of 8.

A specific form of the K matrix is:

K =



2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 −1
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 −1 0 0 0 0 2


(13)

This matrix has unit determinant and all eigenvalues are positive. It defines a
topological phase of bosons without topological order, with eight chiral bosons
at the edge. We will call this the E8 state since it is related to the E8 group.

3See wikipedia entry for E8 root lattice (Gosset lattice)
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