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1 Lecture 3

1.1 SRE phase of bosons in d=3

We would like to understand how to describe the surface states of a 3D SRE
topological phase of bosons. While for free fermions, one has Dirac or Majorana
surface cones, the bosonic analog is less clear, particularly since the surface is 2D
and one does not have access to bosonization and other powerful tools available
for the previous problem of 1D edges.

Based on our previous experience with 1D edges, we will directly consider
the surface and ask how symmetry can act in an anomalous way, to produce a
topological surface. The simplest example is to consider a system with U(1) and
T symmetry, where the U(1) may be considered as a conserved spin component
(Sz) rather than charge. This corresponds to U(1)×T . One option is to break
the symmetry at the surface - this is a valid surface state even for a topological
bulk. Say we break the U(1) to get an ordered surface (which we will call
a ‘superfluid’ since it breaks a U(1) symmetry). To restore this symmetry we
would like to proliferate vortices, that can revert us to the fully symmetric state.
However, for the surface of a topological bulk, there should be an obstruction to
proliferating vortices. The rolling is a potential mechanism - note the vortices
here preserve time reversal symmetry, that is, a vortex is mapped to a vortex
under T . This follows from the fact that our phase degree of freedom transforms
like magnetic order with φ → φ + π under time reversal, so that eiφ → −eiφ.
The vorticity, which is defined via ∇ × ∇φ is invariant under this operation.
Hence we can ask - how does a vortex transform under T ?

There are two physically distinct options, whether the vortex transforms as a
regular, or a projective representation. In the former case there is no obstruction
to condensing vortices and restoring the symmetric phase - hence this cannot
represent a topological surface state. However, the vortices can also transform as
a projective representation since they are nonlocal objects. On a closed surface
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one must make a vortex-antivortex pair. Taken together these must transform
as T 2 = +1. However, individually they can transform as T 2 = −1, i.e. the
vortex is a Kramers doublet. Denote ψσ as the two component vortex field
σ =↑, ↓, which transforms as ψ↑ → ψ↓, ψ↓ → −ψ↑ under time reversal . The
effective Lagrangian is:

L = |(∂µ − iaµ)ψσ|2 + (∂µaν − ∂νaµ)2 +m|ψσ|2 + . . . (1)

where the gauge field is determined by the bosons three current

εµνλ∂νaλ = 2πµ (2)

, which includes the boson charge density j0 and current j1,2. The vortex-gauge
field coupling is intuitively rationalized from the fact that a vortex moving
around a boson acquires a 2π phase. Hence, the gauge potential a that imple-
ments this satisfies: ∂xay−∂yax = 2πj0. This is one component of the equation
2 above, the other components follow from the continuity equation ∂µj

µ = 0.
In this dual language, when the vortices are gapped the U(1) symmetry is

broken, while if they are condensed the U(1) symmetry is restored. The key
difference between a single component vortex field, and the Kramers doublet
vortex, is that in the latter case the vortex condensate always breaks time
reversal symmetry. This can be seen by considering the operator ψ†σσ

a
σσ′ψσ =

na, where σa are Pauli matrices. Since it is a product of a vortex-antivortex
pair, it is a local operator unlike an operator that insets a vortex. Ina vortex
condensate this operator will acquire a nonzero expectation value. Under time
reversal it is readily seen na → −na, indicating that time reversal symmetry
is broken. Thus, the U(1) symmetry is restored at the expense of breaking T .
This is a candidate for a topological surface state.

Exercise Establish this by introducing an external ‘probe’ electromagnet
field that couples to the bosons Lint = jµAµ = Aµε

µνλ∂νaλ/2π and integrate
out the other fields to obtain an effective action in terms of A. Consider doing
this in two limits m > 0 (m < 0), where vortices are gapped (condensed)
Show that when the vortices are gapped, the effective Lagrangian is Leff ∼
A2
⊥, where A⊥ is the transverse part, and this represents a U(1) broken phase

(‘superfluid’). On the other hand, when the vortices are condensed show that
Leff ∼ (∂µAν − ∂νAµ)2 (an ‘insulator’).

We mention two other possible surface states that this theory.
The first is the critical point m = 0, where symmetries are unbroken, but

the surface is gapless. This is the bosonic analog of the gapless Dirac cone of
fermionic topological insulators. However, since bosons are either gapped or
condensed, this requires tuning a parameter to realize. This field theory (the
non compact CP1 model) appeared before in the theory of ‘deconfined quantum
critical points’, describing a direct transition between Neel and Valence bond
solid order in spin models on the square lattice. However, there the vortices
transformed projectively under spatial symmetries - such as translation and
rotation. Here, an internal symmetry (time reversal) is involved - which can
only occur on the surface of a 3D topological phase.
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1.1.1 Surface Topological Order of 3D Bosonic SRE Phases

The second possibility is to consider condensing a pair of vortices Φ = εσσ′ψσ(r)ψ′σ(r′),
which is a Kramers singlet. This leads to a restoration of the U(1) symmetry
(insulator), while preserving T . However, this is an ‘exotic’ insulator with topo-
logical order (excitations that fractional statistics). Note however, the bulk 3D
state is still SRE, and the exotic excitations are confined to the surface. It is
readily shown that the topological order is the same as that in the toric code.
Note, to show this we need to identify an e and m particle which are bosons,
but with π mutual statistics. The m particle is just the unpaired vortex, which
remains as a gapped excitation in this phase. Additionally, we can discuss de-
fects in the 2-vortex condensate. These are nothing but particles - however,
the 2-condensate allows for a fractional particle. To see this consider the the
effective 2-vortex theory L2v = |(∂µ− 2iaµ)Φ|2 + (∂µaν −∂νaµ)2 +m2|Φ|2 + . . .,
which can be obtained from (1) by considering an interaction that pairs vor-
tices and ignoring the gapped single vortices. In the 2-vortex condensate one
can consider vortices - which are obtained from the flux quantization condition
2(∂xay−∂yax) = 2π, but since the flux is related to particle density, this implies
a particle with charge 1/2 that of the fundamental bosons. Clearly, taking a
half charge around a vortex leads to π phase. Hence this is the m particle.

This surface topological order provides a powerful way to characterize a 3D
topological phase. The surfaces of SRE topological phases should be distinct
from states that can be realized purely in the lower dimension. The way this
works with surface topological order is that although the topological order itself
can be realized in 2D, the way the excitations transform under symmetry cannot
be realized in a purely 2D setup. For example here the m particle is a Kramers
doublet while the e particle carries half charge of the boson (and may or may
not be a Kramers doublet).

While in this case it is not immediately apparent that this is forbidden in
2D, we can give another example that arises where this is obvious. Consider
the situation where both e and m particles carry half charge - this is one of the
surface topological orders associated with U(1) charge and T symmetry. . We
can show that this state cannot be T symmetric if realized in 2D, where it can
be described by a K matrix CS theory:

LCS =
2

2π
a1 · ∇ × a2 −

∇×A
2π

· (a1 + a2) (3)

coupling to the external A ensures that we can keep track of the charge. Note,
K = 2σx ensures we have toric code type Z2 topological order (|Det K|=4).
Now, integrating out a, we obtain Leff = − 1

4πA · ∇ × A. This implies that
if this state is realized in 2D it will have a non vanishing Hall conductance,
σxy = Q2/h contradicting the fact that it is T symmetric. However it can be
realized retaining T symmetry on the surface of a topological phase.

The simplest way to argue this is the following construction coupled layer
construction, analogous to the 1D and 2D cases that we discussed before 1.

1See C. Wang and T. Senthil, arXiv: 1302.6234 for details
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Figure 1: (a) Magnetic domains on the surface of a 3D free electron Topological
insulator. The resulting insulating surface has σxy = ±1/2(e2/h) and κxy =
±1/2, since the domain wall carries a single chiral edge mode. (b) Interaction
effects on the surface of a 3D Topological superconductor are irrelevant for weak
interactions, given the linear dispersion of the Majorana cone surface states.
However strong interactions can connect two surfaces without a phase transition
- which implies the bulk phases are equivalent in the presence of interactions.
Establishing this requires nonperturbative techniques.

Consider layers of 2D toric code models where just the e particle carries half
charge. Now, in parallel to the constructions in lower dimensions, we consider
a set of 3 layers, and form a bound state of eimi+1ei+2. This is a boson, which
commutes with other triplets. For example e0m1e2 and e1m2e3 are mutual
bosons. Also, it has integer charge and can be neutralized by a physical bosons.
Hence condensing these triplets leads to a SRE 3D state, with all symmetries.
However, it leaves behind an edge state - eg. e0 is not confined. Similarly
m0e1 also commutes with the condensate. This is the new m particle of the
toric code topological order, which is confined to the top layer. Note that it
carries half charge, which is precisely what we wanted to construct. Here time
reversal is explicitly preserved. By realizing this state on the surface of a 3D
system ensures we never have to declare the edge physics (which would break
time reversal symmetry).

This state corresponds to the surface of a 3D bosonic topological insulator
(3D BTI), and models a surface, which is ‘half’ the 2D bosonic Integer Quantum
Hall phase which has σxy = Q2/h. Note, one can draw the following analogy
to the free fermion topological insulator. A time reversal symmetry breaking
perturbation can render the surface of the 3D TIU insulating. However, a do-
main wall between two opposite T-breaking domain on the surface necessarily
has a single chiral mode along it (see Figure 1). Therefore the difference in Hall
conductivity between the two domains is ∆σxy = 1(e2/h). Also ∆κxy = 1. By
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time reversal symmetry the two domains should have opposite Hall conductiv-

ities - hence we are forced to assign σxy = + 1
2
e2

h and κxy = + 1
2 and the time

reversed version to the other domain. Since a purely 2D free fermion system
cannot have fractional Hall conductivities, it is not possible to screen this with
a 2D layer. In a similar way we can build a 3D topological phase from the
2D integer Quantum Hall state of bosons, by including time reversal symmetry.
This is the 3D BTI, whose surface state is described above.

In a very similar fashion one can model a state with a surface that is ‘half’
the chiral E8 state, but time reversal symmetric when realized in 3D. This is the
3D bosonic topological superconductor (3D BTSc), and although is a symmetry
protected topological phase, is not captured by the ‘cohomology’ approach of
Chen, Liu, Gu and Wen. The surface topological order is the fermionic variant
of the toric code - it has three nontrivial particles that have mutual π statistics,
like the toric code, but all three particles have fermionic statistics. At first
sight it might appear that this state is time reversal symmetric - but in fact
it must carry chiral edge modes if realized in 2D. An explicit Chern Simons
representation of this state is provided through the K matrix:

K =


2 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2

 (4)

The eigenvalues of this matrix are all the same sign, implying that there are 4
chiral modes if this state is realized in 2D, and hence always breaks T symme-
try. However it may be realized on the surface of a 3D topological state with
T . Again this may be obtained via a coupled layer construction. A different
approach 2 to realizing this phase is via an exactly soluble model, based on the
following observation. It is well known in the context of the 2D Fractional Quan-
tum Hall effect, that ground state wavefunctions can be related to correlation
functions of the edge conformal field theory. The two coordinates of particles
in the wave function are traded for a single spatial coordinate at the edge, and
time. Can a similar approach be taken for 3D topological phases? While the
obvious generalization is to relate the wave function written in terms of particle
coordinates, a useful generalization is obtained by representing the wave func-
tion in terms of loops. Now, the amplitude of a particular loop configuration C
in 3D space, Ψ(C), is related to the space-time amplitude for a process in which
the loops are imagined as world lines of particles in the surface topological or-
der. Hence the loops come in different ‘colors’ corresponding to the nontrivial
particles in the theory, and rules concerning how they fuse together etc. are
determined by the topological data of the surface theory. For example, in the
case of the 3-fermion topological order, the amplitude is

Ψ(C) =

∫
Dae

i
∮
C
jµ
I
aIµeiKIJ

∫
εµνλaIµ∂νa

J
λ (5)

2See F. Burnell et al., arXiv:1302.7072 for details
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where the j define the loop structure. This can be converted into a exactly
soluble model ( Walker Wang model) on the cubic lattice .

1.1.2 Surface topological order of fermionic topological insulators
and superconductors.

The well known fermionic Z2 topological insulator is usually associated with a
single dirac cone surface state. Breaking time reversal symmetry at the surface
(eg. by introducing magnetic moments that order) can open a surface gap and
render it insulating. However, this is not the only way to obtain an insulating
surface - one can preserve all symmetries and obtain an insulator with topolog-
ical order as for the bosonic SRE phases. Note, by the same logic as for the 3D
BTI and 3D BTSc, the topological order is such that when realized in purely
3D it breaks T symmetry, and has σxy = 1

2e
2/h and κxy = 1

2 . That is - it is a
candidate for a fractional Quantum Hall effect of electrons in a half filled Lan-
dau level. The most famous such candidate is the Moore-Read Pfaffian state,
which may be thought of as Ising × U(1)8. More physically, one can imagine
beginning with a superconductor of electrons, in a px + ipy state, where the
Cooper pairs are effectively at νCooper = 1/8 filling 3 When the Cooper pairs
form a bosonic Laughlin state, the Moore-Read state results. Unfortunately,
while this state has the right σxy it has κxy = 3/2. Moreover, a quick glance at
the topological spins of the quasiparticles reveals that it cannot be made time re-
versal symmetric even on the surface of a 3D topological insulator. Fortunately
a simple variant is much more promising - one considers px−ipy superconductor
in conjunction with the same Cooper pair Laughlin state, i.e. Ising∗ × U(1)8.
This state, dubbed the T-Pfaffian can be made time reversal symmetric on the
surface of a 3D TI, but of course breaks it in 2D since it has a finite Hall con-
ductance. A different but equivalent solution features the Moore-Read state in
conjunction with a neutral anti-semion theory U(1)−2. The surface topological
order helps to understand how this classification is augmented in the presence of
strong interactions wherein the electrons may pair to form bosons that exhibit
a topological phase. The electrons could form Cooper pairs that then go into a
3D BTI phase. Or, the electrons could combine into neutral bosons that then
enter a 3D BTSc phase. Both of these extend the original Z2 Classification by
an additional factor of Z2. Wang, Potter and Senthil showed that this exhausts
the set of 3D topological phases of interacting electrons with charge conservation
and T symmetry.

The topological superconductors in 3D are protected by T , and, for the
physical case of T 2 = −1 when acting on fermions, gives rise to an integer
set of topological phases. One may imagine that combining pairs of electrons
into neutral bosons, one can augment this classification by Z2, by including the
3D BTSc in this list. However, it turns out that this phase is already present
in the free fermion classification and corresponds to number ν = 8 of the Z
classification. Hence, there is no new phase. On the other hand, since this

3νCooper = 1
4
νelectron, since there are half as many Cooper pairs as electrons, and the

magnetic field measured in units of the new flux quantum h/2e is twice as large.
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Symmetries Free Fermions Interacting Bosons Interacting Fermions
U(1) (charge) and T Z2 Z3

2 Z3
2

Topological Insulator Class AII
T Z Z2

2 Z16

T 2 = (−1)NF TSc Class DIII

Table 1: Topological phases in 3D with short range entanglement. The physi-
cally most relevant symmetries, corresponding to the topological insulator and
superconductor.

phase has a Z2 classification, this implies that two copies of ν = 8, i.e. ν = 16
is trivial. Therefore the interacting topological superconductor classification is
reduced from the free fermion one Z → Z16. This observation is interesting
since it represents a non-perturbative result in 2+1 dimensions. The surface of
a topological superconductor with ν = 1 has a Majorana cone with low energy
dispersion:

H = −iχT (σx∂x + σz∂y)χ (6)

where χT = (χ1, χ2). The surface with index ν then has ν flavors with the
dispersion above. It is readily verified that weak interactions at the surface
are irrelevant. From Eqn. 6, requiring that the action corresponding to the
kinetic term is dimensionless (and both time and space have same dimensions
[t] = [x] ∼ L the scaling dimension of the χ fields are [χ] ∼ 1

L . The interaction
term, written schematically as Sint ∼

∫
d2dt (χTa σyχa)(χTb σyχb) then has scaling

dimension [Sint] ∼ 1
L which means that it is irrelevant at long scales. Therefore,

the way ν = 16 is connected to ν = 0 is via strong interactions as shown in
the figure 1b. Establishing this therefore requires a nonperturbative analysis.
While bosonization provides such a tool for a 1+1D edge, establishing this for
2+1D requires new nonperturbative tools - such as working with the surface
topological order or a dual vortex theory.
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