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Abstract This paper rests to a large extend on a paper I wrote quite awhile
ago on Duality in generalized Ising models and phase transitions without local or-
der parameter. It deals with Ising models with interactions containing products
of more than two spins. In contrast to this old paper I will first give examples
before I come to the general statements. Finally I will shortly mention a few,
but very important developments, which have some relation to this paper, (i)
the basic idea by Ken Wilson of a theory for quarks and gluons, and (ii) the idea
by Thomas Weiland to discretize Maxwell’s equations on lattices used here.

1 Introduction

In this contribution I consider a number of Ising models, which arose out of
the question, whether there is duality for Ising models in dimensions larger
than two. Indeed the idea of duality can be used to construct a whole class
of such systems, which however, differ from conventional Ising models in some
properties. First these models contain products of more than two Ising spins,
Secondly they have no longer local order parameters, but they can still have
two phases. For a number of these systems the order appears in the expectation
value of the product of the spins along a loop, called Wilson-loop. It shows in
the limit of large loops an area law at high temperatures and a perimeter law
at low temperatures.

Such models, where the ising spins are replaced by members of groups, typi-
cally by the groups U, SU(2) and SU(3) have become important in high-energy
physics in the description of quarks and gluons.

In sect. 2 I review the Kramers-Wannier duality for two-dimensional Ising
models. In sect. 3 I introduce the model dual to the conventional three-
dimensional Ising model. In sect. 4 the general concept of Ising models and
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duality is introduced. In sect. 5 this is applied to general lattices and in sect.
6 to models on hypercubic lattices. The correlation functions are considered in
sect. 7. The basic idea of lattice gauge theory is given in sect. 8 and a useful
lattice for the discretization of Maxwell’s equations is mentioned in sect. 9.

2 Kramers-Wannier Duality

Kramers and Wannier[6, 9] predicted in 1941 the exact critical temperature of
the two-dimensional Ising model on a square lattice. They did this by comparing
the high- and the low-temperature expansion for the partition function of this
model. Consider a square lattice with Ns = N1×N2 lattice points and periodic
boundary conditions. There is an Ising spin Si,j = ±1 at each lattice site. The
Hamiltonian reads

H = −J
N1
∑

i=1

N2
∑

j=1

(Si,jSi,j+1 + Si,jSi+1,j). (1)

High temperature expansion (HTE) We may rewrite

e−βH =
∏

i,j

(coshK + sinhKSi,jSi,j+1)(coshK + sinhKSi,jSi+1,j)

= (coshK)Nb

∏

i,j

(1 + tanhKSi,jSi,j+1)(1 + tanhKSi,jSi+1,j) (2)

In order to determine the partition function, we may expand this expression
in powers of tanhKSS′ and sum over all spin configurations. This summation
yields zero unless all spins appear with even powers. In this latter case the sum
is 2Ns . This is the case, when the interaction bonds form closed loops. That is
at each lattice site meet an even number of bonds as shown in the upper figs.
of fig. 1.

The partition function can be expanded

Z(K) = (coshK)Nbf(tanhK), (3)

f(a) =
∑

l

cla
l, (4)

where K = βJ . The coefficients cl count the number of closed loops of length
l, c0 = 1, c2 = 0, c4 = Ns, c6 = 2Ns, c8 = Ns(Ns + 9)/2, etc. and cl = 0 for
odd l.

Low temperature expansion (LTE) We now consider the low temperature
expansion on the dual lattice. The dual lattice is obtained by placing a spin
S∗(r∗) inside each of the squares (in general polygons) of the original lattice. We
muliply spins S∗ in polygons with a common edge and sum over these products,
which in the case of the square lattice writes

H∗ = −J∗
∑

i,j

(S∗
i−1/2,j−1/2S

∗
i−1/2,j+1/2 + S∗

i−1/2,j−1/2S
∗
i+1/2,j−1/2). (5)
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Figure 1: Examples for closed loops in the HTE and Bloch walls in the LTE on
the dual lattice

Assuming positive J∗ the states lowest in energy are those where all S∗ are
equal. There energy is

E∗
min = −NbJ

∗, (6)

where Nb = 2N∗
s is the number of bonds.

Excited states are found by flipping some spins. Flipping one spin over costs
an excitation energy 2lJ , if the spin interacts with l other spins. Quite general
the excitation energy is given by 2lJ , if the flipped spins are surrounded by
Bloch walls of a total number of l edges. In the case of the square lattice one
obtains

Z∗(K∗) = 2eNbK
∗

f(e−2K∗

) (7)

with f defined in (4).

Comparison Kramers and Wannier argued: If the partition function or equiv-
alently the free energy has a singularity at the critical point and no other sin-
gularity, then it must be determined by

e−2Kc = tanhKc, (8)

which yields

Kc =
1

2
ln(1 +

√
2) = 0.4407, (9)

which indeed turned out to be correct from Onsager’s exact solution[7]. Thus
there is a relation between the partition function and similarly the free energy
at high (K < Kc) and low (K∗ > Kc) temperatures for

tanhK = e−2K∗ ↔ tanhK∗ = e−2K → sinh(2K) sinh(2K∗) = 1. (10)
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The square lattice is called self-dual, since the HTE and the LTE are per-
formed on the same lattice. This is different for the triangular lattice, where
the HTE is performed on the triangular lattice and the LTE on the honeycomb
lattice. See fig. 2. Then however the HTE of the triangular lattice and the LTE
of the honeycomb lattice are given by the same sum f(a),

Zhte
3 (K) = 2Ns3(coshK)Nbf3(tanhK), Z lte

6 (K) = 2eNbKf3(e
−2K), (11)

Zhte
6 (K) = 2Ns6(coshK)Nbf6(tanhK), Z lte

3 (K) = 2eNbKf6(e
−2K), (12)

where the number Nb of bonds are equal in both lattices and Ns3 = Nb/3 and
Ns6 = 2Nb/3. The coefficients cl in f3 and f6 count the number of closed loops
on the triangular and the honeycomb lattice, resp.

Figure 2: Triangular and dual hexagonal lattice. The thick black triangle indi-
cates a product of 3 interactions on the triangular lattice contributing to HTE
and the Bloch wall for a flipped spin on the hexagonal lattice. Similarly the
thick red hexagon indicates a product of 6 interactions on the hexagonal lattice
contributiong to HTE and the Bloch wall of a flipped spin on the triangular
lattice.

As a consequence the partition functions Z3(K) and Z6(K
∗) are directly

related for K and K∗ given by (10). One cannot directly read of the critical
values Kc for these lattices. However, the Ising model on the honeycomb lattice
can be related to that on the triangular lattice by means of the star-triangle
transformation[9]. To do this one eliminates every other spin of the hexago-
nal lattice by summing

∑

S0
eKS0(S1+S2+S3) one obtains CeK

′(S1S2+S1S3+S2S3),
which yields the Ising model on the triangular lattice.

3 Duality in 3 dimensions

The basic question I asked myself, when I started my paper[10] on duality
in generalized Ising models was: Does there exist a dual model to the three-
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dimensional Ising model? It turned out, that there is such a model, but of a
different kind of interaction. (Compare also [1])

In order to see this, I consider the low-temperature expansion of the 3d-Ising
model on a cubic lattice. I start out from the ordered state and then flip single
spins. These single spins are surrounded by closed Bloch walls. The expansion
of the partition function is again of the form (4), but now with c2 = 0, c4 = 0,
c6 = Ns, c8 = 0, c10 = 3Ns, c12 = Ns(Ns − 7)/2, etc.

The HTE of the dual model must be given by an interaction such that
only closed surfaces yield a contribution. Thus locate a spin at each edge and
introduce the interaction as a product of the spins surrounding an elementary
square called plaquette. Thus the interaction of the dual model reads

H = −J
∑

i,j,k

( Si+1/2,j,k+1/2Si+1/2,j+1/2,kSi+1/2,j,k−1/2Si+1/2,j−1/2,k

+ Si+1/2,j+1/2,kSi,j+1/2,k+1/2Si−1/2,j+1/2,kSi,j+1/2,k−1/2

+ Si+1/2,j,k+1/2Si,j+1/2,k+1/2Si−1/2,j,k+1/2Si,j−1/2,k+1/2).(13)

It is the sum over three differently oriented plaquettes. They are shown in fig.
3.

Figure 3: Elementary cube with spins. The red circles (ellipses) indicate, which
four spins are multiplied in the interaction

S-independent products of R(b) From fig. 3 it is obvious that the product
of the six R(b) around the cube does not depend on the spin configuration, since
each spin appears twice in the product.

Gauge invariance This model has a local gauge invariance. Flipping all spins
around the corner of a cube does not change the energy of the configuration.
As an example in fig. 3 the three spins around the corner close to the center
are flipped from the state, in which all spins are aligned upwards.
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4 General Ising models and duality

4.1 General Ising models

We consider models with Ns Ising spins on lattice sites r described by a Hamil-
tonian

βH = −
∑

b

K(b)R(b), R(b) =
∏

r

S(r)θ(r,b), θ(r, b) ∈ Z2+ (14)

We call the b bonds; there number be Nb. θ(r, b) assumes the values 0 and
1. Obviously R(b) is the product of the Ising spins S(r) with θ(r, b) = 1.
We denote the rank of the matrix θ modulo 2 by Nθ. Thus there is at least
one θ × θ-submatrix, whoose determinant equals one modulo 2, whereas all
(θ + 1)× (θ + 1)-submatrices equal zero modulo 2. If we write

S(r) = (−)σ(r), R(b) = (−)ρ(b), σ(r), ρ(b) ∈ Z2+ (15)

then
ρ(b) =

∑

r

θ(r, b)σ(r). (16)

If all K(b) are positive, then one ground state is given by S(r) = +1. In general
there will be several ground states. They obey ρ(b) ≡ 0 mod 2 for all b. We
denote the corresponding configurations by σ0(r),

∑

r

θ(r, b)σ0(r) ≡ 0 mod 2. (17)

There are Ns−Nθ linearly independent solutions {σ0}. which yield 2Ng ground
state configurations with

Ng = Ns −Nθ. (18)

4.2 Duality

Besides the Ising model described by the Hamiltonian (14) we consider a second
Hamiltonian

β∗H∗ = −
∑

b

K∗(b)R∗(b), R∗(b) =
∏

r∗

S∗(r∗)θ
∗(r∗,b). (19)

with N∗
s spins S∗(r∗) on lattice sites r∗. The bonds b are common to both

Hamiltonians. Similarly we introduce the rank N∗
θ and obtain the ground state

degeneracy 2N
∗

g with N∗
g = N∗

s −N∗
θ .

The two models are called dual to each other, if two conditions are fulfilled:
(i) the closure condition

∑

b

θ(r, b)θ∗(r∗, b) ≡ 0 mod 2 (20)
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for all pairs r, r∗, and
(ii) the completeness relation Nm = 0, where

Nm := Nb −Nθ −Nθ∗ . (21)

If these two conditions are fulfilled, and K(b) and K∗(b) are connected by (10),
then the partition functions of the two models are related by

Y {K} = Y ∗{K∗}, (22)

where
Y {K} = Z{K}2−(Ns+Ng)/2

∏

b

(cosh(2K(b))−1/2 (23)

and similarly for Y ∗{K∗}.
Derivation of (22, 23) The partition function Z{K} can be written in HTE

Z{K} =
∑

{S(r)}

e−βH =
∑

{S(r)}

∏

b

eK(b)R(b)

=
∏

b

coshK(b)
∑

{φ(b)}

∏

b

tanhK(b)φb

∑

{S(r)}

∏

b

R(b)φb , (24)

with φ(b) ∈ Z2+ independent for all b. Since

∏

b

R(b)φb =
∑

r

S(r)
∑

b
θ(r,b)φ(b), (25)

those φ(b) = φ0(b) contribute, which obey the set of homogeneous equations

∑

b

θ(r, b)φ0(b) ≡ 0 mod 2 (26)

for all r. There are Nb − Nθ linearly independent solutions. Such there are in
total 2Nb−Nθ solutions {φ0}. They contribute with the factor 2Ns . Thus

Z{K} = 2Ns

∏

b

coshK(b)
∑

{φ0(b)}

∏

b

tanhK(b)φ0(b). (27)

The partition function Z∗{K∗} reads in the low-temperature expansion

Z∗{K∗} =
∑

{S∗(r∗)}

e−β∗H∗

= N∗
g

∑

closed{b}

∏

b

eK
∗(b)R∗(b)

= N∗
g

∏

b

eK
∗(b)

∑

closed{b}

∏

b

e−2K∗(b)ρ∗(b), (28)

since R∗(b) = 1 − 2ρ∗(b). The closed sets of R(b) appearing in the sum obey
the homogeneous equations

∑

b

θ(r, b)ρ∗(b) ≡ 0 mod 2 (29)
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The closure condition yields

∑

b

θ(r, b)ρ∗(b) =
∑

b

∑

r∗

θ(r, b)θ∗(r∗, b)σ(r∗) ≡ 0 mod 2. (30)

Therefore ρ∗(b) obeys eq. (26) and the partition function may be written

Z∗{K∗} =
∏

b

eK
∗(b)

∑

{φ0}

N{φ0}
∏

b

e−2K∗(b)φ0(b), (31)

where N{φ0} is the number of configurations {σ∗}, which yields {φ0}

φ0(b) =
∑

r∗

θ∗(r∗, b)σ∗(r∗) ≡ 0 mod 2. (32)

If it has no solution, then N{φ0} = 0, otherwise it has N{φ0} = 2N
∗

g solutions.
For β∗ = 0 one has

Z∗ = 2N
∗

s =
∑

{φ0}

N{φ0}, (33)

which implies that the number of sets {φ0} yielding N{φ0} = 2N
∗

g is 2N
∗

s −N∗

g =
2N

∗

θ .
If the completeness condition is fulfilled, then all sets {φ0} obeying (26) are

contained in Z∗{K∗}. Thus

Z∗{K∗} = 2N
∗

g

∏

b

eK
∗(b)

∑

{φ0}

∏

b

e−2K∗(b)φ0(b). (34)

The sums over {φ0} are the same for Z{K} and Z∗{K∗} in (27) and (34).
Denoting

f{a} :=
∑

{φ0}

∏

b

a(b)φ0(b), C :=
∏

b

coshK(b)

(cosh(2K(b)))1/2
(35)

one obtains
∏

b

eK
∗(b)

(cosh(2K∗(b)))1/2
= 2NbC (36)

and

Y {K} = 2(Ns−Ng)/2Cf(tanhK), (37)

Y ∗{K∗} = 2(Nb+N∗

g−N∗

s )/2Cf(e−2K∗

) = 2(Ns−Ng+Nm)/2Cf(e−2K∗

).(38)

This yields the duality relation (22) for Nm = 0.
If Nm > 0, then the summation in (34) does not extend over the full set

{φ0}. Let the sum denote by f ′{a} instead of f{a} and

Y ∗{K∗} = 2(Ns−Ng+Nm)/2Cf ′(e−2K∗

). (39)
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Since all terms in the sum f are positive, one obtains f ′ < f and thus the
inequality

Y ∗{K∗} < 2Nm/2Y {K}. (40)

We have obtained this relation from the HTE of Z and the LTE of Z∗. If
instead we consider the HTE of Z∗ and the LTE of Z, then we obtain a second
inequality, in total

2−Nm/2Y {K} < Y ∗{K∗} < 2Nm/2Y {K}. (41)

The difference in the free energy per polytope due to the factors N
±1/2
m in (41)

vanishes in the thermodynamic limit, if Nm does not increase in the thermody-
namic limit.

Example: Two-dimensional Ising model The two-dimensional Ising model
with Ns spins on the square-lattice yields N∗

s = Ns, Nb = 2Ns, Ng = N∗
g = 1,

and thus Nm = 2. The closed loops which show up in the HTE, but not in the
l.t.e. are those, where one loop runs around the torus in one or the other or both
directions. This corresponds to antiperiodic boundary conditions. Denoting the
partition function with boundary conditions Si,j = sxSi+N1,j = sySi,j+N2

by
Zsx,sy one obtains the exact relation

Y {K} = 1/2(Y++{K∗}+ Y+−{K∗}+ Y−+{K∗}+ Y−−{K∗}). (42)

The difference in the free energy per polytope due to the factors N
±1/2
m in (41)

vanishes in the thermodynamic limit.

5 Lattices and their dual lattices

The models considered up to now are generalized to models in arbitrary di-
mensions d. I divide the d-dimensional hypervolume into Cd d-polytopes B

(d).
These are bounded by (d−1)-polytopes B(d−1). Generally the k-polytopes B(k)

are bounded by (k− 1)-polytopes B(k−1). Their number is denoted by Ck. The
0-polytopes are simply the C0 corners B(0) of the d-polytopes.

I associate lattice points r(k) lying in the k-polytopes B(k).
For given n a bond b(r(n)) is associated to each r(n). Cn−1 Ising spins

S(rn−1) are introduced and define θ(r(n−1), b(r(n))) = 1, if B(rn−1) is part of
the boundary of B(r(n). Otherwise θ(r(n−1), b(r(n))) = 0. Similarly Cn+1 Ising
spins S∗(r(n+1)) and θ∗(r(n+1), b(r(n)) = 1, if B(r(n)) is part of the boundary of
B(r(n+1)). We observe now that the closure condition (20) is fulfilled. If B(n−1)

is an (n− 1) dimensional cell at the boundary of B(n+1), then B(n−1) is, where
two boundaries B(n) of B(n+1) meet. Then the expression on the l.h.s. of (20)
equals 2, otherwise 0. This defines together with couplings K and K∗ models
(14) and (19).

The dual lattice is obtained in the following way: The points r(d) are the
corners of the dual lattice. Pairs of points r(d) are connected by 1-dimensional
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cells B∗(1), if the corresponding two cells are separated by a B(d−1). The 1-
dimensional cells B∗(1) crossing the cells B(d−1) around a given a cell B(d−2) is
the boundary of a 2-dimensional cell B∗(2). Generally the k-dimensional cells
B∗(k) crossing the cells B(d−k) around a cell B(d−k−1) is the boundary of a
(k + 1)-dimensional B∗(k+1). It is reasonable to define the intersection of a cell
B∗(k) with its corresponding cell B(d−k) as the point r∗(k) = r(d−k). Thus the
number of cells B∗(k) and points r∗(k) is C∗

k = Cd−k.
I define now

θ(r(k+1), r(k)) =

{

1 B(k) on boundary of B(k+1),
0 B(k) not on boundary of B(k+1) (43)

Closure relation: An important property of the lattices is the closure relation:
Consider a pair r(k+1) and r(k−1). They lie in cells B(k+1) and Bk−1. Then

∑

r(k)

θ(r(k+1), r(k))θ(r(k), r(k−1)) ≡ 0 mod 2. (44)

Proof: If B(k−1) is on the boundary of B(k+1), then two cells B(k) on the
boundary of B(k+1) have B(k−1) as boundaries. If B(k−1) is not at the boundary
of B(k+1), then none of the B(k) on the boundary of B(k+1) has B(k−1) as
boundary. This proofs (44).

5.1 Models on the lattice

The model Mdn have Cn+1 spins on lattice sites r(n−1) with an interaction
defined by the bonds

R(b) =
∏

r(n−1)

S(r
(n−1))θ(r

(n−1),r(n)(b)). (45)

The dual model M∗
d,d−n has C∗

d−n+1 = Cn−1 spins at lattice sites r(n+1),

R∗(b) =
∏

r(n+1)

S∗(r(n+1))θ(r
(n)(b),r(n+1)). (46)

Gauge invariance Flipping all spins close to a point r(n−2),

S(r(n−1)) → (−)θ(r
(n−2),rn−1)S(r(n−1) (47)

does not change the energy of the system, since any R(b) is multiplied by

(−)
∑

rn−1 θ(r(n−2),r(n−1)))θ(r(n−1),rn(b)), (48)

which due to the closure relation (44) yields one.

Spin-independent products R(b) The product over all R(b) around a given
rn+1, that is
∏

b

R(b)θ(r
n(b),rn+1) =

∏

r(n−1)

S(r(n−1))
∑

r(n) θ(r(n−1),r(n))θ(r(n),r(n+1)) = 1. (49)
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Figure 4: Example of two-dimensional lattices in a periodicity square. The
upper three examples do not yield χ = 0, since walls indicated in red lines do
not intersect any edges. The lower two examples yield χ = 0.

does not depend on the spin configuration, since due to the closure relation (44)
it yields one.

Generalized Euler characteristic The well-known Euler characteristic in
d = 2 dimensions

χ = C0 − C1 + C2, (50)

where C0 is the number of vertices (corners), C1 number of edges, and C2 the
number of faces, depends only on the topology of the surface. For the plane one
has χ = 2, if the outer face is also counted. For the torus one has χ = 0. This
characteristic can be generalized to arbitrary dimension d,

χ =

d
∑

m=0

(−)mCm. (51)

Any lattice with the same boundaries (topology) can be created from any other
one by means of the following steps and their inverses:
Step: An m-dimensional polytope is divided into two such cells by creating
an (m + 1)-dimensional polytopes between them. Then both Cm and Cm+1

increase by one and χ is conserved.
For periodic boundary conditions one obtains χ = 0, since we may cut the

lattice in one direction, double it and glue the two parts together. Then all
Cm have doubled, but χ = 2χ and thus vanishes. It is presumed that it is not
possible to introduce an additional ’wall’ B(d−1) in any periodic direction, which
does not intersect any of the original cells B(d−1). See fig. 4.

Degeneracy We consider the change of Ng resulting from the application of
a step as defined below (51): If m > n, then the Hamiltonian is unchanged.
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For m = n one bond and thus one interaction is duplicated without change of
degeneracy. For m = n−1 one spin is duplicated, but for the ground state both
must equal. For m = n − 2 there is also one additional spin. Taking this spin
aligned upwards, one obtains again the ground state. But changing the signs of
all spins lying on bonds adjacent to one B(n−1) at the boundary of the new bond,
one obtains another ground state. Then the system has twice the degeneracy of
the original system. The hamiltonian does not chage for m < n− 2. Therefore
we obtain

Ng = tg +

n−2
∑

m=0

(−)n−mCm, (52)

where tg depends only on the boundary condition. Similarly one obtains

N∗
g = t∗g +

d
∑

m=n+2

(−)m−nCm. (53)

Thus

Nm = Nb −Ns +Ng −N∗
s +N∗

g = Cn − Cn−1 − Cn+1 +Ng +N∗
g

=
d

∑

m=0

(−)n−mCm + tg + t∗g = (−)nχ+ tg + t∗g (54)

We argue after (57) that

tg =

(

d− 1

n− 1

)

, t∗g =

(

d− 1

d− n− 1

)

, Nm =

(

d

n

)

. (55)

for periodic boundary conditions.

6 The models Md,n on hypercubic lattices

The models Md,n are defined on hypercubic lattices. The polytopes B(k) are
k-dimensional hypercubes with edges of unit length. The lattice points r(k) have
k integer coordinates and r(d−k) half integer coordinates, that is they are 1/2
modulo 1. We assume periodic boundary conditions, then

Ck =

(

d

k

)

Cd. (56)

The model Mdn has spins on sites r(n−1). The dual model M∗
d,d−n has spins on

sites r(n+1) = r∗(d−n−1). It is the modelMd,d−n shifted by 1/2 in all coordinates.
Due to the above conditions r(n+1) and r(n−1) can only have a bond in

common, if they agree in d− 2 coordinates and differ only in 2 coordinates. Let
these coordinates be (i, j) and i ± 1/2, j ± 1/2. Then they have two bonds in
common as claimed before: (i, j ± 1/2) and (i ± 1/2, j) and fulfill the closure
condition.
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Gauge invariance and degeneracy If n > 1, then one may turn over all spins
closest to a given point r(n−2) without changing the energy of the system. Thus
these systems have a local gauge invariance. This leads to a high degeneracy of
the ground state. From (52) we obtain

Ng = tg +
n−2
∑

m=0

(−)n−m

(

d

m

)

Cd = tg +

(

d− 1

n− 2

)

Cd (57)

For only one hypercube Cd = 1 in the periodic lattice one obtains Ng = Ns,
since periodic boundary conditions require that the spins in the products R(b)
are pairwise equal, we obtain tg as in (55). Thus

Ng =

(

d− 1

n− 1

)

+

(

d− 1

n− 2

)

Cd. (58)

Similarly we obtain

N∗
g =

(

d− 1

d− n− 1

)

+

(

d− 1

d− n− 2

)

Cd. (59)

and Nm given in (55).

Spin-independent products R(b) In the h.t.e. we sum over products of
R(b), which yield unity for arbitrary spin-configurations. A large number of
them are obtained by taking the product of all R(b(r(n))), where the r(n) are
neighbors of any given r(n+1), since S(r(n−1)) appears twice in the product, if
r(n+1) and r(n−1) are closest, otherwise S(r(n−1)) does not appear. Obviously
also the products of such ’elementary products’ of R(b) are spin-independent.

Self-duality Obviously the models Mdn on the hypercubic lattice is self-dual,
if d = 2n. This is the case forM2,1, which is the two-dimensional Ising model on
the square lattice. But also the four-dimensional modelM4,2 with the plaquette
interaction is self-dual. Both have the phase transition at Kc = 0.4407, (9). The
Ising model M2,1 shows a continuous transition. Creutz, Jacobs, and Rebbi[2]
have investigated the model M4,2 by Monte Carlo techniques. They determined
〈R(b)〉 as a function of K. They found a first order transition with hysteresis.
By increasing K the system showed superheating until ≈ 0.48 and by decreasing
K undercooling until ≈ 0.40. Starting from a mixed phase the phase transition
was located between 0.43 and 0.45.

Duality can be generalized to Abelian groups Z(N). Let S(r) = e2πip/N with
p = 0, ...N − 1 and the energy assigned to two product of two spins in states p
and p′ by Ep−p′ , then the weights ωp−p′ = e−βEp−p′ and their dual are related
by the Fourier transform[11]

ω∗
p = N−1/2

′
∑

p

e2πipp
′/N . (60)

This can be generalized to the models Mdn. The models M42 are self-dual
for ZN with N = 3, 4 and the critical Kc are determined[5, 15]. Monte-Carlo
calculations[3] confirm these transition temperatures for N = 3, 4. Correspond-
ing calculations yield two phase transitions for N ≥ 5.
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7 Correlations

Non-vanishing correlations are only obtained for gauge-invariant products. These
are products of R(b). In particular we consider the product of spins on the
boundary of an n-dimensional hypercube of Mdn. The HTE yields

〈
∏

r

S(r)〉 = (tanhK + 2(d− n)(tanhK)1+2n + ...)υ, n > 1, (61)

=
1

2
[tanhK + (2(d− 1))1/2(tanhK)2 + ...]υ

+
1

2
[tanhK + (2(d− 1))1/2(tanhK)2 + ...]υ, n = 1. (62)

where υ is the volume of the hypercube. For n = 1 this is the distance between
the two spins; for n = 2 it is the area spanned by the spins. The LTE yields

〈
∏

r

S(r)〉 = (1− e4(d−n+1)K + ...)f , n < d,

〈
∏

r

S(r)〉 = (1− 2e−2K + ...)υ, n = d, (63)

where f is the hyperarea of the boundary of the hypercube (for n = 1 it is the
number f = 2 of ends of the line; for n = 2, f is the perimeter of the square).
Thus the behavior of the correlation functions of large hypercubes differs in the
high and low temperature phases, and we expect

〈
∏

r

S(r)〉 ∝
{

e−υ/υ0(T ) T > Tc, n < d
e−f/f0(T ) T < Tc, n < d

(64)

We attribute the qualitatively different asymptotic behavior in both tempera-
ture regions to different states of the system above and below a critical temper-
ature Tc.

The model Mdd The only restriction on the R(b) is that the product of all of
them equals one. Consequently the partition function reads

Z(K) = 2Ns [(coshK)Nb + (sinhK)Nb ] (65)

The expectation value of a product of υ factors R yields

〈
∏

b

R(b)〉 = (tanhK)υ + (tanhK)Nb−υ

1 + (tanhK)Nb
. (66)

The models Mdd do not show a phase transition. Among these models is M11,
a closed linear chain of Ising spins.

7.1 Dislocations

We consider systems with magnetic dislocations. Let the operator M(b) change
the sign of K(b). We introduce φ∗(b) = 1 for bonds with changed signs, and
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φ∗(b) = 0 for bonds with unchanged coupling. Then the expectation value of
the product of M(b)s is

〈
∏

b

M(b)φ
∗(b)〉 = 〈

∏

b

e−2φ∗(b)K(b)R(b)〉

=
Z{(−)φ

∗

K}
Z{K} =

Y {(−)φ
∗

K}
Y {K} . (67)

From (10) we obtain tanh((−)φ
∗

K) = e−2K∗−iπφ∗

and thus

〈
∏

b

M(b)φ
∗(b)〉 = Y {K∗ + iπφ∗/2}

Y {K∗}

= i−
∑

b
φ∗(b)〈

∏

b

eiπφ
∗(b)R∗(b)/2〉{K∗} = 〈

∏

b

R∗(b)φ
∗(b)〉{K∗}. (68)

Figure 5: Correlation between the two spins at the dots

Interpretation Kadanoff and Ceva[4] introduced this concept for the two-
dimensional Ising model M2,1. Take a sequence of bonds b indicated by either
the blue or the green bars between the two spins at the sites indicated in fig. 5
by two red circles, then 〈∏bR

∗(b)〉 is the product of these two Ising spins at K∗.
It equals the ratio of the partition functions with the changed bonds and the
unchanged bonds, thus the exponential of the difference ∆F of the free energy
without and with the changed bonds at K,

〈S(r∗)S(r∗′

)〉(K∗) = e−∆F (K). (69)

If K is in the paramagnetic region, then the disturbance of the bonds yields
a contribution to δF only close to the points, where this line of bonds ends.
Thus for large separation of the two spins it approaches a finite value, which
corresponds to the square of the magnetization at K∗. On the other hand if K
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is in the ferromagnetic region, then the disturbance will change the free energy
proportional to the distance between the two spins S(r∗) and S(r∗

′

), which
yields an exponential decay of the correlation function.

Let us now consider M3,1 and M3,2. Change the sign of the interaction
∑

ij SijkSijk+1 over a whole region (area) in the plane spanned by ij. Analogous
to the two-dimensional Ising model, the change δF (K) will be proportional
to the perimeter f for paramagnetic K and proportional to the area υ for
ferromagnetic K. The product

∏

bR
∗(b) is now the product of the Ising spins

along the perimeter of the dislocations. Consequently the expectation value
decays proportional to e−f/f0(T

∗) at low temperatures T ∗ and proportional to
e−υ/υ0(T

∗) at high temperatures T ∗ in accordance with (64).

Local order parameter If all states are taken into account. the correlations
different from zero are only obtained from products of R, For n = 1 the product
of two spins S(0)S(r) can be written as product of Rs. For n > 1 products
of spins

∏

k S(ak)
∏

l S(r + al) with with ak and al restricted to some finite
region |ak| < c, |al| < c yield only finite correlations for distances r > 2c, if
both

∏

k S(ak) and
∏

l S(r + al) are separately gauge invariant, that is, they
are expressed as finite products of R. However, with (67, dis2) expectations of
products of R in one phase can be expressed by correlations in the other phase

〈
∏

some b

R(b)〉{K} = 〈
∏

same b

(cosh(2K∗(b))−R∗(b) sinh(2K∗(b))) (70)

Thus since there is no long range order in the high temperature phase, there
can be none in the low temperature phase,

lim
r→∞

(〈
∏

k

S(ak)
∏

l

S(r + al)〉 − 〈
∏

k

S(ak)〉〈
∏

l

S(al)〉) = 0. (71)

Thus there is no local order parameter for models Mdn with n > 1. This
argument does not apply for n = 1, since in this case the number of Rs in the
product increases with |r|.

8 Lattice gauge theories

We have seen that models Mdn with n > 1 show local gauge invariance. Such
models are related to quantum chromodynamics. The basic idea first formu-
lated by Wilson[13] is to start from the lattice, we introduced as M42. (For a
retrospect by Wilson see [14]. Many reprints on this subject are compiled in
Rebbi’s book[8]). The degrees of freedom are now denoted by U in place of S.
These U are elements of a group. It may be a finite or a continuous group, it
may be an Abelian or non-Abelian group. In the case of QCD one considers the
group SU(3). Let us denote the U placed on the link between lattice sites i and
j by Uij , where one requires Uji = U−1

ij . The action is a sum of terms

g−2
∑

plaquettes

(1− 1

N
ℜtr(UijUjkUklUli)), (72)
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where N is the dimension of U . In addition one introduces quarks (fermions)
with interaction

g′−2
∑

links

ψ†
iUijψj . (73)

These interaction terms are invariant under local gauge transformations

ψj → Gjψj , ψ†
j → ψ†

jG
†
j , Uij → GiUijG

†
j . (74)

The couplings depend on temperature and pressure of the hadron system. At
low temperature and pressure the correlations fall of with an area law. Since the
action is an integral over time, this behaviour corresponds to an increase of the
effective potential between quarks proportional to the distance between them.
The gradient of the potential is called string tension and given by 1/υ0(T ) in
(64). This potential binds three quarks, which constitute a hadron. Or one
quark and one antiquark are bound and constitute a meson. Generally the
difference between the number of quarks and antiquarks has to be a multiple
of three. At high temperature and high pressure the system forms a quark-
gluon plasma. This corresponds to the phase in which the correlation increases
proportional to the perimeter of the loop. Then the effective potential between
the quarks stays finite at large distances and the quarks are rather free to move
in this plasma.

9 Electromagnetic field

The electromagnetic field in QED and its coupling to charged particles can be
described similarly with the group U(1),

Uij = e
i
∫

i

j
Aµdx

µ

(75)

Then

tr(Ur,r+aµeµUr+aµeµ,r+aµeµ+aνeνUr+aµeµ+aνeν ,r+aνeνUr+aνeν )

≈ eia
µaνFµν(r+(aµeµ+aνeν)/2) (76)

with the electromagnetic field tensor

Fµν = ∂µAν − ∂νAµ. (77)

Since only the real part of tr(
∏

U) contributes, one obtains in leading order the
well-known action of the electromagnetic field proportional to FµνF

µν . If one
performs the continuum limit (a→ 0) then only these terms survive.

The discretized Maxwell equations can be solved on such a lattice[12]. One
places the components Aµ on sites r(1), the six electromagnetic field components
Fµν on sites r(2), the components of the charge and current densities on sites
r(1). Lorenz gauge and charge conservation can be put on sites r(0).
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