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Quantum spin liquids∗Grégoire MisguihInstitut de Physique ThéoriqueCEA, IPhT, CNRS, URA 2306F-91191 Gif-sur-Yvette, FraneAbstratThese notes are an introdution to a few seleted theoretial ideas in the �eld of quantumspin liquids: lassial zero modes and breakdown of the 1/S expansion, the Lieb-Shultz-Mattis-Hastings theorem and Oshikawa's argument, the short-ranged resonating valene-bondpiture, large-N limit (Shwinger bosons) and Z2 gauge theory.Contents1 Introdution: band and Mott insulators 12 Some materials without magneti order at T = 0 33 Spin wave theory, zero modes and breakdown of the 1/S expansion 43.1 Holstein-Primako� representation . . . . . . . . . . . . . . . . . . . . . . . . . . 43.2 Bogoliubov transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.3 Zero modes on the kagome lattie . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Lieb-Shultz-Mattis theorem, and Hastings's extension to D > 1: groundstate degeneray in gapped spin liquids 84.1 Oshikawa's topologial argument . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Anderson's short range resonating valene-bond piture 106 Shwinger bosons, large-N limit, and Z2 topologial phase 126.1 Shwinger bosons representation . . . . . . . . . . . . . . . . . . . . . . . . . . 126.2 Mean �eld approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126.3 Large N , saddle point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.4 Flutuations about a saddle point and gauge invariane . . . . . . . . . . . . . 156.5 Z2 gauge �eld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166.6 A simple e�etive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176.7 Tori ode limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Introdution: band and Mott insulatorsDepending on the ontext (experiments, theory, simulations,...), �Quantum spin liquid� issometimes used with rather di�erent meanings. But let us start with a �rst simple de�nition:the ground state of a lattie quantum spin model is said to be a quantum spin liquid (QSL)if it spontaneously breaks no symmetry. Aording to this �rst de�nition, a QSL is realized ifthe spins fail to develop any kind of long range order at zero temperature (T = 0) (hene theword �liquid�, as opposed to solids whih are ordered and break some symmetries). Of ourse,this �rst de�nition raises a number of questions: Does this de�ne new distint states of matter
∗Letures given at the Les Houhes summer shool on �Exat Methods in Low-dimensional Statistial Physisand Quantum Computing� (July 2008). 1
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? Do QSL have some interesting properties ? Are there some experimental examples ? Toanswer these questions, it is useful to go bak to the origin of magnetism in insulators.Generally speaking, there are two kinds of insulators: band insulators, andMott insulators.The �rst ones an be qualitatively understood from the limit of non-interating (or weaklyinterating) eletrons. Consider for instane a periodi lattie1 with an even number n ofsites per unit ell, with an average eletron density of one eletron per site (so-alled half�lling). The Hamiltonian desribing how the eletrons hop from sites to sites looks like
HK = −t

P

〈i,j〉,σ=↑,↓

“

c†iσciσ + H.c
”, where only �rst neighbor hopping is onsidered forsimpliity. H an be diagonalized in Fourier spae and gives n dispersing bands. The groundstate is just the Fermi sea obtained by �lling the lowest energy states. Sine the densityis one eletron per site, the n/2 lowest energy bands are ompletely �lled (one up and onedown eletron for in eah single partile state). Assuming that the band n/2 + 1 is separatedby a gap ∆ in energy from the n/2 lower bands, all the exitations are gapped and, attemperatures smaller than the gap, there is no harge arrier to arry an eletri urrent.This is the well known piture for a band insulator: there are no low energy harge degreesfreedom, no magneti (spin) degrees of freedom, the ground state (Fermi sea) is unique andbreaks no symmetry. To get some interesting QSL, we should instead look at Mott insulators.There, the number of sites per unit ell is odd and the non-interating limit is unable togive the orret insulating behavior (at least one band is partially �lled, hene with lowenergy harge exitations). It is more useful to look at the system in the opposite limitof very large eletron-eletron repulsion, as with the large U limit of the Hubbard model:

H = HK + U
P

i, c
†
i↑ci↑c

†
i↓ci↓. At U = ∞ and t = 0 (still at half �lling), the ground stateis highly degenerate (= 2V , where V is the total number of sites) sine any state with oneeletron per site is a ground state, whatever the spins orientations. To desribe how thisdegeneray is lifted at weak but �nite t/U , a seond order perturbation has to be omputed.2The result is an e�etive Hamiltonian ating in the subspae spin on�gurations, and takesthe form of a quantum spin- 1

2
Heisenberg model:

H =
1

2

X

ij

Jij
~Si · ~Sj (1)where Jij = t2ij/U involves the hopping amplitude tij between sites i and j and measures thestrength of the antiferromagneti (AF) interation between the (eletron) spins ~Si and ~Sj .3Although the model of Eq. 1 is in general a ompliated quantum many body problemwith very few exat results,4 its ground state and low energy properties are qualitatively wellunderstood in many ases. In partiular, the ground state an be antiferromagnetially ordered(also alled Néel state). Suh state an be approahed from a semi lassial point of viewdesribed in Se. 3: the spins point well de�ned diretions and form a regular struture. Mostof the Mott insulators studied experimentally belong to this family. The simplest exampleis the nearest neighbor Heisenberg model on bipartite latties suh as the square, ubi orhexagonal latties. There, on average, all the spins of the sublattie A point in diretion

+~S0 (spontaneous symmetry breaking of the SU(2) rotation symmetry), and all the spins ofsublattie B point in diretion −~S0. The di�erene with a lassial spin on�guration is thatthe magnetization of one sublattie (it is the order parameter for a Néel state) is redued bythe quantum zero-point �utuations of the spins, even at T = 0. Suh ordered states are notQSL (they might instead be alled spin �solids�) sine they break the rotation symmetry.The main question addressed in these notes is the fate of the ground state of Eq. 1 when thelattie and the interations Jij are suh that the spins fail to develop any suh Néel orderedstate. A state without any order is not neessarily interesting from a theoretial point of1We use a tight binding model where the solid is modeled by one state per site, negleting (or, more preisely,integrated out) �lled orbitals or high energy empty states.2At �rst order in t, a single eletron hopping inevitably leads to a doubly oupied site.3In real materials, there are often tens or hundreds of eletron per unit ell, several ions and many atomiorbitals. Although the desription of the magneti properties in terms of lattie spin models if often very aurate,the spin-spin interations is often more ompliated than this antiferromagneti Heisenberg model. It is quitefrequent that some interations violate the SU(2) symmetry of the Heisenberg model, due to spin-orbit ouplingsin a rystalline environment. In these notes, we fous on models with an SU(2) symmetry.4In these notes, we fous here on dimension D > 1, but muh more is known about one-dimensional (1D) spinhains. 2



view. For instane, a spin system at very high temperature is ompletely disordered and doesnot have any rih struture. As we will see, the situation in Mott insulators at T = 0 isompletely di�erent. A �rst hint that Mott QSL host some interesting topologial propertieswill be disussed in Se. 4 (Lieb-Shultz-Mattis [1℄ Hastings [2℄ theorem). A onrete (butqualitative) piture for QSL wave funtions is given in Se. 5, in terms of short range valenebond on�gurations and deon�ned spinons (magneti exitations arrying a spin 1
2
). Finally,Se. 6, presents a formalism whih puts some of the ideas above on �rmer grounds. It isbased on a large-N generalization of the Heisenberg models (SU(2) → Sp(N)) whih allowto desribe some gapped QSL and to establish a onnetion by topologially ordered state ofmatter, suh as the ground state of Kiatev's tori ode [3℄.2 Some materials without magneti order at T = 0There are many magneti insulators that do order at T = 0.5 For instane, the magneti,properties of many ompounds are desribed by 1D spin hains of spin ladder Hamiltonians.Thanks to the Mermin-Wagner theorem and the redued dimensionality, these system annotdevelop long range spin-spin orrelations, even at T = 0.6 They ertainly deserves to be alledQSL and represent a very rih �eld of ativity. In these notes we will instead fous on QSLin D > 1 systems, where our present understanding is less omplete.CaV4O9 is the �rst Heisenberg system in D > 1 where the magneti exitations wereexperimentally shown to be gapped, in 1995 [4℄. This ompound an be modeled by an an-tiferromagneti spin- 1

2
Heisenberg model on a depleted square lattie where one site out of�ve is missing (Fig. 1). The remaining sites orrespond to the loations of the Vanadiumions, whih arry the magnetially ative eletrons (spins). The magneti interations Jijturned out to be signi�ant not only between nearest neighbors, but also between seondnearest neighbors (the eletron hops through oxygen orbitals, whih have a omplex geome-try). Through magneti suseptibility measurements, it was shown that the ground state isa rotationally invariant spin singlet, thus exluding any Néel ordering. This QSL behavioran be understood by taking a limit where only the strongest Jij are kept, and the other areset to zero. It turns out these strongest ouplings are between seond-nearest neighbors, andform a set of deoupled four-site plaquettes (of area √

2×
√

2 and surrounding a missing site).Sine the ground state of suh a four-site Heisenberg luster is a unique singlet S = 0 state,separated by a gap from other states, the model is trivially a gapped and without any brokensymmetry in this limit. But this is not the kind of QSL we want to fous on here, sine itan be adiabatially transformed into a band insulator. Swithing o� the eletron-eletroninterations would make the system metalli, but one an proeed in a di�erent way. Startingwith realisti values of the Jij , the inter plaquette ouplings are gradually turned o�. Doingso, one an hek (numerially for instane) that the spin gap does not lose and no (quantum)phase transition in enountered. Then, in this systems of deoupled four-eletron luster, theHubbard repulsion U an be swithed to zero, without ausing any phase transition. The �nalmodel is evidently a band insulator and smoothly onneted to the initial Heisenberg model.Sine then, numerous 2D and 3D (Heisenberg) magneti systems with an even numberof spin- 1
2
per unit ell have been found to be gapped. To our knowledge, their ground statean be qualitatively understood from a limit of weakly oupled lusters in all ases and antherefore be �lassi�ed� as band insulators (as CaV4O9 above). Some of them an be veryinteresting for di�erent reasons,7 but their ground states are not fundamentally new states ofmatter.In the reent years, experimentalists have also unovered a number of materials whih arewell desribed by 2D Heisenberg models with an odd number of spin- 1

2
per rystal unit ell,8and whih do not develop any Néel order when T → 0. Some examples are the Herbertsmithite5Some order at a temperature with is very small ompared the typial energy sale of the Heisenberg spin-spininterations. This is often due to perturbations that are not inluded in the simplest Heisenberg model desription.6Due to some residual 3D ouplings, there an be a �nite temperature phase transition to an ordered state atvery low temperature.7For instane: TlCuCl3 [6℄ is oupled dimer system with a Bose-Einstein ondensation of magneti exitationsin presene of an external magneti �eld, and SrCu3(BO3)2 [5℄ has a magnetization urve with quantized plateaus.8In suh ase, the absene of long range order annot be attributed to some band insulator physis.3



Figure 1: Depleted square lattie model for the magneti properties of CaV4O9. The di�erentexhange energies are shown by di�erent types of line. The strongest J orrespond to the fat linesforming the large tilted square plaquettes.(ZnCu3(OH)6Cl2)9 [7℄ and Volborthite (Cu3V2O7(OH)2 ·2H2O)[8℄ minerals (both with akagome lattie geometry), triangular based organis materials [9, 10℄, or triangular atomilayers of He3 adsorbed onto graphite [11℄ (there the spin is not eletroni, but nulear). It turnsout that all these systems seem to have gapless magneti exitations and a omplete theoretialunderstanding of these system is still laking. The present theories for gapless QSL are ratherelaborate [12℄ and many questions remain open (stability, nature of the exitations, orrelationexponents, et.). However, as we will see, gapped QSL are simplest from a theoretial pointof view. Intriguingly, to our knowledge, no gapped QSL has been disovered so far in nature,although many spin models do have gapped QSL ground states.3 Spin wave theory, zero modes and breakdown ofthe 1/S expansionTo understand why an AF Heisenberg spin model an fail to order at zero temperature, is isuseful to brie�y review the standard approah to Néel phases: the semi-lassial 1/S spin-waveexpansion [13℄. This approah i) starts from a lassial spin on�guration whih minimizes theHeisenberg interation ii) assumes that the quantum deviations from this ordered diretionare small iii) treats this deviations as olletion of harmoni osillators (the leading term in a
1/S expansion). In this approximation the Hamiltonian is written using boson reation andannihilation operators, is quadrati, and an be diagonalized by a Bogoliubov transformation.One an then hek a posteriori if the spin deviations are indeed small. If it is not the ase,we have a strong indiation that the magneti long range order is in fat �destroyed� by thequantum �utuations, thus opening a route for a QSL ground state.3.1 Holstein-Primako� representationThe starting point is the representation of the spin operators using Holstein-Primako� [14℄bosons

Sz
i = S − a†

i ai , S+ =

q

2S − a†
i ai ai , S− = a†

i

q

2S − a†
i ai, (2)from whih on an hek that the ommutation relations [Sα

i , Sβ
i ] = iǫαβδSδ

i and ~S2
i = S(S+1)are satis�ed (using [ai, a

†
i ] = 1).Let {~zi} be a lassial ground state of Eq. 1, minimizing E = 1

2

P

ij Jij~zi · ~zj with ~z2
i = 1.These diretions an be used as loal quantization axes: we use Eq. 2 in a loal (orthogonal)frame (~xi, ~yi, ~zi = ~xi ∧ ~yi) adapted to the lassial ground state. Under the assumption that

~Si shows small deviations from the lassial vetor S~zi, the typial number 〈a†a〉 of Holstein-Primako� bosons should be small ompared to S. We an therefore simplify S+ (and S−) in9Although the spin-spin interation strength is of the order of J ∼ 200 K, no order has be found down to 50mK.4



Eq. 2 by keeping only √
2S in the square roots, to obtain [13℄

~Si ≃
„

(S +
1

2
) − ~π2

i

«

~zi +
√

2S~πi (3)where
~πi =

1

2
(ai + a†

i )~xi +
1

2i
(ai − a†

i )~yi (4)
~π2

i = a†
i ai +

1

2
(5)

and ~zi · ~πi = 0. (6)Replaing Eq. 3 in the Hamiltonian gives
H =

1

2
(S +

1

2
)2

X

ij

Jij ~zi · ~zj + S
X

ij

Jij ~πi · ~πj

−1

2
S

X

ij

Jij

`

~π2
i + ~π2

j

´

~zi · ~zj + O(S0). (7)The �rst term is a onstant, proportional to the lassial energy E0. The two other terms,proportional to S, are quadrati in the boson operators and desribe the spin �utuationsas a set of oupled harmoni osillators.10 The positions qi = 1√
2
(ai + a†

i ) and momenta
pi = 1√

2i
(ai − a†

i ) operators of these osillators an be onveniently grouped into a olumnvetor of size 2N (N is the total number of spins):
V =

2

6

6

6

6

6

6

4

q1

:
qN

p1

:
pN

3

7

7

7

7

7

7

5

(8)so that H beomes
H = (S +

1

2
)2E0 +

S

2
V

tMV, (9)where M is a 2N × 2N matrix given by
M =

»

Jxx − Jzz Jxy

(Jxy)t Jyy − Jzz

– (10)and the N × N matries Jxx, Jyy, Jxy and Jzz are de�ned by:
Jxx

ij = Jij ~xi · ~xj , Jyy
ij = Jij ~yi · ~yj , Jxy

ij = Jij ~xi · ~yj (11)
and Jzz

ij = δij

X

k

Jik~zi · ~zk. (12)3.2 Bogoliubov transformationDiagonalizing H amounts to �nd bosoni reation operators b†α and orresponding energies
ωα ≥ 0 suh that H =

P

α ωα

`

b†αbα + 1
2

´ (up to a onstant). A neessary ondition is that theoperator b†α and bα are �eigenoperators� of the ommutation with H , for the eigenvalues ωαand −ωα respetively: ˆ

H, b†α
˜

= ωαb†α and [H, bα] = −ωαbα. We thus seek the eigenvetorsof the ation of [H, •] in the spae of linear ombinations of qi and pj . The ommutators of
H (Eq. 9) with the operators q and p are simple to obtain using [qi, qj ] = [pi, pj ] = 0 and10Due to the fat that {~zi} minimizes the lassial energy, P

j Jij~zj is perpendiular to ~zi and thus orthogonalto ~πi, and there is no term linear in ~π. 5



[qi, pj ] = iδij . For an arbitrary linear ombinations of the qi qnd pi parametrized by theomplex numbers x1, · · · , x2N the result is
[H,x1q1 + xNqN + xN+1p1 + · · ·x2NpN ]

= y1q1 + yNqN + yN+1p1 + · · · y2NpN (13)with the oe�ients y1, · · · , y2N given by
2

6

4

y1...
y2N

3

7

5

= iS M

2

4

0 1

−1 0

3

5

2

6

4

x1...
x2N

3

7

5

(14)where 1 is the N × N identity matrix. So, �nding the operators b†α (spin-wave reationoperators) amounts to �nd the eigenvetors of the �ommutation matrix� C = iM
»

0 1

−1 0

–.But C is not symmetri and annot always be fully diagonalized (ontrary to M). It anbe shown that if all the eigenvalues of M were stritly positive, C ould be diagonalized, itseigenvalues would be real and ome in pairs −ω,ω.11However, M does have some zero eigenvalues. The matrix M is not spei� to thequantum spin problem. The quadrati form desribing the lassial energy variation for a smallperturbation around the hosen lassial ground state {~zi}, is desribed by the same matrix
M.12 In partiular, if the lassial ground state admits some zero energy (in�nitesimal) spinrotations, M posses some eigenvetor for the eigenvalue 0. Beause global rotations shouldnot hange the energy, M has at least two zero eigenvalues. Still, these global rotations do notause di�ulties in diagonalizing the spin-wave Hamiltonian, they just orrespond to some
ωα = 0 (the assoiated olletive oordinate Q and onjugate momentum P simply do notappear in H).3.3 Zero modes on the kagome lattieHowever, some Heisenberg models admit lassial zero modes (hene zero eigenvalues in M)whih do not orrespond to global rotations. As an example, onsider the Heisenberg modelon the kagome lattie [15℄ (for another lassi example, the J1-J2 model on the square lattie,see [16℄). Any lassial spin on�guration suh that the sum ~zi + ~zj + ~zk vanishes on eahtriangle (ijk) minimizes the lassial energy. Among the numerous ways to ahieve theseonditions, are the planar ground states, where all the spins lie in the same plane. In suha state, the spins take only three possible diretions, ~a, ~b and ~c at 120 degrees from eahother. On the kagome lattie, there is an exponential number of ways to assign these threeorientations suh that the same letter is never found twie on the same triangle (three-oloringproblem, see Fig. 2). Now, hoose one of these �abc� states, and �nd a losed loop of the type
ababab · · ·. Beause of the three-oloring rule, the spins whih are neighbors of this loop allpoint in the ~c diretion. Now, we an rotate the spins of the loop about the ~c axis by any angle.This transforms the planar ground state into another (non planar) ground state, without anyenergy ost. So, for a generi planar ground state, we get as many zero modes (in M) aslosed loops with two alternating �olors�. This number typially grows like the number ofsites in the system.What are the onsequenes of suh lassial zero modes for the quantum problem ? Asexplained previously, the operators desribing the two transverse diretions along whih thespins an deviate from the ~zi axis obey the same ommutation rules (at leading order inthe 1/S expansion) as the position q and momentum p of an harmoni osillator. In thease of the kagome loop modes disussed above, the energy is zero in one diretion (rotation11Let P be an orthogonal matrix whih diagonalizes symmetri M : M = P−1λP , where λ is a diagonal matrixand PP t = 1. If the eigenvalues of M are stritly positive, K = P−1

√
λ is invertible and M = KKt. Wewrite C = iS KKt σ, where σ =

»

0 1

−1 0

–. Then, C̃ = K−1CK = iS Kt σK is Hermitian (sine σ is realantisymmetri, and K is real). C̃ an therefore be diagonalized and its spetrum is real. Sine C and C̃ have thesame spetrum, C an also be diagonalized and has real eigenvalues. Finally, we use Ct = −C. Sine C and Ctshould have the same spetrum, the eigenvalues of C go in pairs −ω, ω.12The Eqs. 3 and 7 also hold if ~πi is a lassial spin deviation of length ~π2
i ≪ 1.6
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Figure 2: Classial planar ground state on the kagome lattie. The loops where the spins alternatebetween the ~a and ~b diretions are marked with dashed lines, they host independent zero modes(by rotation around the ~c axis).about the ~c diretion), and quadrati in the other diretion. Using the assoiated olletiveoordinate P and Q, we expet the Hamiltonian to be proportional to H = 1
2
(P 2 + ω2Q2)with ω = 0, sine there is no lassial energy ost for spin deviation in the diretion Q. Theorresponding ommutation matrix is C = i

»

0 ω2

−1 0

– and annot be diagonalized when
ω = 0, as antiipated. In general, eah suh loal zero mode will lead to an irreduible 2 × 2Jordan blok of this kind.13 The ground state |0〉 of the osillator is simple to obtain andorresponds to a zero point motion of the oordinate Q whih diverges when ω → 0 (norestoring fore, like for a free partile) : 〈0|Q2|0〉 = 1

2ω
.As long as the the number of suh zero modes is �nite in the thermodynami limit (thisis the ase when the lassial ground state has no speial degeneray, beyond those impliedby global rotations), the divergenes above have a zero measure and do not ause divergenesin the number of bosons 〈0|a†

i ai|0〉,14 whih measures the strength of the deviations fromthe lassial state. In suh a ase, the Néel ordered state is stable with respet to quantum�utuations, at least for large enough S.15 On the other hand, if the number of suh modesgrow like N , the average number of bosons diverge and the spin-wave expansion breaks down(the initial assumption that 〈0|a†
i ai|0〉 is �nite and small ompared to S annot be satis�ed).At this point, a route to obtain a QSL appears to look for a lattie where the lassialmodel has a su�ient number of �soft� modes, so that the zero point motion of the spins restorethe rotation invariane and destroy the long range spin spin orrelations. This ondition isrealized on the kagome lattie, where indeed all numerial studies onluded to the abseneof Néel order in this system (at least for S = 1

2
). However, the semi lassial spin wavetheory desribed here breaks down. As disussed in the next setions, QSL states in Mottinsulators possess some internal topologial properties whih are missed by the simple pitureof a �disordered� state whih would just be the quantum analog of a high temperature phase.13The general theory for possible Jordan forms of C (size and nature of the irreduible bloks) is in fat a resultof lassial mehanis, found by Williamson and exposed in [17℄.14 〈0|a†

i ai|0〉 = 1
2
〈0|p2

i +q2
i −1|0〉 an be omputed by expressing qi and pi in terms of b†α and bα, or in terms of thenew position and momenta Qα = 1√

2
(bα + b†α) and Pα = 1√

2i
(bα − b†α) Conentrating on the term 〈0|q2

i |0〉, qi is alinear ombination of the type qi =
PN

α=1 ui
αQα +

PN
β=1 vi

βPβ , (u and v are related to the eigenvetors of C). Fromthe fat that |0〉 is the vauum of the bα bosons, we have 〈0|PiPj |0〉 = 〈0|QiQj |0〉 if i 6= j, and 〈0|PiQj +QjPi|0〉 = 0
∀i, j. Then the square of the spin deviation at site i (here the ~xi omponent) is a linear ombination of the zeropoint �utuations of the normal harmoni osillators 〈0|q2

i |0〉 =
P

α(ui
α)2〈0|Q2

α|0〉 +
P

α(vi
α)2〈0|P 2

α|0〉. Assuminga regular behavior of the oe�ient (ui
α)2 and (vi

α)2, 〈0|q2
i |0〉 is typially the sum of terms proportional to ∼ 1/ωαwhen the mode frequeny ωα is small.15This does not imply that the order should persists down to S = 1

2
.
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x=0 x=1
x=L−1 x=2Figure 3: A lattie model whih is translation invariant and periodi in the x diretion an beviewed as a ring. The interations Jij , indiated by dashed lines, are invariant in the x diretionbut otherwise arbitrary. In this example, eah ross setion has C = 3 sites.4 Lieb-Shultz-Mattis theorem, and Hastings's exten-sion to D > 1: ground state degeneray in gapped spinliquidsThe Lieb-Shultz-Mattis theorem [1℄ was originally derived for spin hains and spin ladders[18, 19℄ and was reently extended to higher dimensions in an important work by Hastings[2℄ (see also [20℄ for an intuitive topologial argument valid in any dimension, and [21℄ fora mathematially rigorous proof). It applies to spin Hamiltonians whih are translationinvariant in one diretion (say x), have a onserved magnetization Sz

tot =
P

i Sz
i , and shortrange interations. In addition, the model should have periodi boundary onditions in the xdiretion. Although more general interations an easily be onsidered,16 we onentrate forsimpliity on spin-S Heisenberg models, written as in Eq. 1 (with Ji,j = Ji+x,j+x to respetthe translation invariane).Following [20℄, we de�ne the ross setion as all the sites sitting at a given value of x. Bytranslation invariane, all ross setions are equivalent and ontain C sites (Fig. 3). In a spinhain, eah ross setion ontains a single site. In an n− leg spin ladder, C = n sites. In asquare lattie, C = Ly. On a D-dimensional lattie with n sites per unit ell, C = nLD−1,et. We note Lx the system length in the x diretion, and therefore CLx is the total numberof sites. Finally we de�ne mz = 1

CLx
〈0|Sz

tot|0〉 as the ground state magnetization per site.The theorem says that if C(S+mz) is not an integer, the ground state is either degenerate,or the spetrum has gapless exitations in the thermodynami limit. In other words, if
C(S + mz) /∈ Z the system annot have a unique ground state and a �nite gap to exitedstates in the thermodynami limit. Although the proof in 1D [1℄ and Oshikawa's topologialargument [20℄ (Se. 4.1) are relatively simple, the proof appears quite involved for D > 1, andwill not be disussed here.What is the relation between the LSMH theorem and QSL ? In most AF Heisenbergmodels on a �nite-size lattie, |0〉 is a singlet and mz = 0. If we fous on the ase S = 1

2
,the theorem forbids a single ground state and a gap when C is odd. In partiular, if thelattie is two dimensional and desribes a Mott insulator, the unit ell has an odd number

n of sites and any odd Ly an be hosen to get and odd C = nLy (note that the totalnumber of sites is still even if Lx is even). If we assume that a gapped QSL is realized(for an example whih �ts in the LSMH onditions, see for instane [22℄), its ground statemust be degenerate (with periodi boundary onditions). Usually, ground state degeneraiesare the signature of some spontaneous symmetry breaking. However, by de�nition, a QSLrespet all lattie symmetries. The degeneray imposed by the LSMH theorem annot beunderstood from this onventional point of view and is a hint that (gapped) QSL wave funtionpossess some interesting topologial properties, whih orrespond to the notion of �topologialorder� introdued by Wen [23, 24℄ for spin systems and Wen and Niu [25℄ in the ontext ofthe frational quantum Hall e�et. As we will brie�y disuss at the end, this topologial16In partiular, the interation an be anisotropi: Sz
i Sz

j + ∆(Sx
i Sx

j + Sy
i Sy

j ), and an external magneti �eldparallel to the z diretion an be present. 8
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Figure 4: Shemati spetrum of the twisted Hamiltonian (Eq. 15) as a funtion the angle θ, inthe ase where C(S + mz) is a half integer.degeneray is deeply related to the exoti nature of the elementary exitations in a QSL.174.1 Oshikawa's topologial argumentOshikawa's argument is somehow related to Laughlin's argument [26℄ for the quantizationof the transverse ondutivity in the quantum Hall e�et. First, a �twisted� version of theHamiltonian is introdued:
Hθ =

1

2

X

ij

Jij

»

Sz
i Sz

j +
1

2

“

eiθ(xi−xj)/LxS+
i S−

j + H.c
”

– (15)where 0 ≤ xi < Lx is the x-oordinate of site i. It is simple to show that the spetra of H0and H2π are the same, sine the unitary operator
U =

Y

i

exp

„

2iπ
xi

Lx
Sz

i

« (16)maps H0 onto H2π:
UH0U

−1 = H2π (17)(the alulation simply uses eiθSz
i S+

i e−iθSz
i = S+

i eiθ).Starting with a spetrum of H0 whih is gapped, we further assume that the gap of Hθremains �nite when θ goes from 0 to 2π.18 On an follow the ground state of Hθ, whih doesnot ross any other energy level as θ is varied. Assuming that the ground state |0〉 of H0 isunique and using the �nite gap hypothesis, it must evolve to the ground state of H2π, denoted
|2π〉. Through Eq. 17, both states are related: |2π〉 = U−1|0〉. However, the operator U doesnot always ommute with the translation operator T and may hange the momentum. Thepreise relation is

TU = UT exp

„

2iπ
Sz

tot

Lx

«

exp (2iπCS) . (18)The �rst phase fator, also equal to 2πCmz , omes from the shift by 2π/Lx of the loal rotationangles after a translation. The seond phase fator orrets the 2π jump of the rotation anglewhen passing from x = Lx − 1 to x = 0. This relation implies that the momentum k0 of |0〉(de�ned by T |0〉 = eik0 |0〉) and the momentum k2π of |2π〉 = U−1|0〉 are related by
k0 = k2π + 2πC(S + mz) (19)But Hθ is translation invariant (ommutes with T ) and the momentumof eah state (quantizedfor �nite Lx) annot hange with θ. So |0〉 and |2π〉 have the same momentum and k0 =

k2π [2π]. From Eq. 19, we get that C(S + mz) must be a integer.17QSL have �spinons� exitations whih arry a spin 1
2
(like an eletron) but no eletri harge.18Hastings argument does not diretly use Hθ for a �nite θ and does not rely on this assumption. This assumptionis however reasonable by the fat that, under an appropriate hoie of gauge (frame), H = H0 and Hθ only di�erfor the terms onneting the ross setion at x = Lx − 1 to the ross setion at x = 0 (boundary terms), and areidential in the bulk. 9



Figure 5: A short range valene bond state on the triangular lattie. The singlet pairs are markedwith ellipses.5 Anderson's short range resonating valene-bond pi-tureIn the 1/S expansion, it is assumed that the spins experiene small �utuations about awell de�ned diretion and that spin-spin orrelations are long ranged. This is of ourseinompatible with having a rotationally invariant QSL state. To gain some intuition aboutwhat a QSL wave funtion may look like, it is instrutive to start from a ompletely oppositelimit: a spin singlet state with extremely short range orrelations. A short range valene-bond (VB) state is suh a wave funtion, it is the diret produt of S = 0 states |[ij]〉 =
1√
2

(| ↑i↓j〉 − | ↓i↑j〉) on pairs of sites :
|VB〉 = |[i0i1]〉 ⊗ |[i2i3]〉 ⊗ |[i4i5]〉 ⊗ · · · |[iN−1iN ]〉 (20)where eah site of the lattie appears exatly one (Fig. 5). Suh a VB state is said to beshort range if all pairs of sites oupled in a singlet are at a distane |rip − rip+1

| smaller thanor equal to some �xed length rmax(muh smaller that the lattie size). The simplest ase is
rmax = 1, where eah spin forms a singlet with one of its nearest neighbors.In a VB state, the spin-spin orrelations are short ranged: 〈VB|~Si · ~Sj |VB〉 = 0 if |rip −
rip+1

| > rmax. For a nearest neighbor Heisenberg model on a bipartite lattie, one an omparethe (expetation value of the) energy of a nearest neighbor VB state, with that of the simpletwo-sublattie Néel state | ↑↓↑↓ · · ·〉. The VB energy is eVB = −J 3
8
per site and the Néelone is eN = −J z

8
, where z is the number of nearest neighbors. If the lattie is not bipartitebut admits a three-sublattie lassial ground states (with spins pointing at 120 degrees fromeah other), the energy of a lassial Néel state is eN = −J z

16
. From this, we observe forinstane that the VB energy is lower than eN on the kagome lattie. More generally, thissimple variational omparison shows that a low oordination z and frustrated interations(whih inrease the number of sublatties in the lassial ground state) tend to favor VBstates, and thus possible QSL states.In fat there are many (frustrated and Heisenberg-like) toy models where some/the nearestneighbor VB states are exat ground states. The most famous example is the Majumdar-Goshmodel [27℄. Consider the spin- 1

2
Heisenberg hain with �rst- (J1) and seond- (J2) neighborouplings. At J1 = 2J2 > 0 we have

HMG = 2
X

i

~Si · ~Si+1 +
X

i

~Si · ~Si+2 (21)and the (two-fold degenerate) ground states are exatly given:
|a〉 = · · · ⊗ |[01]〉 ⊗ |[23]〉 ⊗ |[46]〉 ⊗ · · · (22)
|b〉 = · · · ⊗ |[12]〉 ⊗ |[34]〉 ⊗ |[56]〉 ⊗ · · · (23)The proof an be done three steps. First, the Heisenberg Hamiltonian on three site Hijk =

~Si · ~Sj + ~Sj · ~Sk + ~Sk · ~Si is written as Hijk = 1
2
(~Si + ~Sj + ~Sk)2 − 9

8
. In this form, proportionalto the square of the total spin, it is lear that the eigenvalues of Hijk are 1

2
S(S + 1) − 9

8with S = 1
2
or S = 3

2
(the only possible values of S for three spin- 1

2
). So, if the sites ijk10



are in a S = 1
2
state, they minimize exatly Hijk. Seond, one expresses the Majumdar-GoshHamiltonian as

HMG =
X

i

Hi−1,i,i+1. (24)Finally, one remarks that the dimerized states |a〉 and |b〉 always have one singlet among thesites i − 1, i, i + 1, whih are therefore in a S = 1/2 state. We onlude that |a〉 and |b〉minimize all the terms in Eq. 24 and are thus ground states of HMG.The Majumdar-Gosh model is the simplest model of a family of spin models where exatVB ground states an be found.19 For instane, the Husimi atus [30℄ is a lattie onstrutedas a tree (no loops) of orner sharing triangles. Its geometry is loally similar to the kagomelattie but it has no losed loop (exept of ourse for the triangles themselves). The argumentabove (writing the Hamiltonian as a sum of Hijk) diretly generalizes to this ase and showsthat any nearest neighbor VB state is a ground state. One an also mention the 2D Shastry-Sutherland Heisenberg model [31℄, where a partiular nearest neighbor VB is the uniqueground state, and whih has an experimental realization in SrCu2(BO3)2 [5℄.So far, we do not yet have any gapped liquid state.20 To obtain a qualitative idea of howVB states an be the building bloks of a gapped QSL, we will brie�y explain the short rangeresonating valene bond (RVB) piture proposed by Anderson [32℄. If we exlude the toymodels disussed above, a VB state is generally not an eigenstate of the Heisenberg model.Starting from a nearest neighbor VB state, the Heisenberg Hamiltonian will indue somedynamis among the VB states. If we take the kagome example, a nearest neighbor VBstate inevitably ontains some �defet� triangles without any singlet.21 While the term Hijkleaves the VB state unhanged if the orresponding triangle has a singlet bond, the three VBtouhing i, j and k will be moved by Hijk if (ijk) is a defet triangle. The ground statean be viewed as a linear ombination of (many) VB on�gurations (not neessarily nearestneighbor). Anderson suggested that, with appropriate interations and lattie geometry, theground state wave funtion ould be �deloalized� over a large part of the subspae spannedby short range VB states. By forming a linear superposition of a large number of verydi�erent VB states, the system may restore all the lattie symmetries (whih are broken byan individual VB state) and form a QSL.A more formal approah to this idea will be disussed in Se. 6, but this piture analready be used to antiipate the nature of the magneti exitations in suh a short rangeRVB liquid. To this end, we �rst onsider a 2D model where one ground state is equal to (ordominated by) one partiular VB state. Contrary to the Anderson's RVB liquid, the wavefuntion is loalized in the viinity of one partiular VB state. It an be thought as a 2Danalog of the Majumdar Gosh hain, where the ground state is a spatially regular arrangementof singlet bonds. Many 2D models are known to realize suh VB rystals (VBC) [33℄, andwe refer to Ref. [34℄ for a reent example where the exat ground states are known. Ina VBC, a �nite energy exitation an be reated by replaing a singlet bond by a triplet(S = 1), with an energy ost proportional to J . But is it possible to onstrut two separatedspin- 1
2
exitations in suh a system ? As a trial state, one an plae two remote spins �up�(two spinons exitations) at sites 0 and i. Then, to minimize the energy, the regular VBstruture of the ground state should be reonstruted as muh as possible. However, dueto the spinons, the regular pattern annot be fully reonstruted between 0 and i, and a"string" of misaligned VB is unavoidable. The unpaired spins behave as a topologial defetin the rystalline order. So, two remote spinons perturb the ordered VB bakground, notonly in their viinity, but all the way between them. They lead to an energy ost whih isproportional to their separation.22 So, isolated spinons are not �nite energy exitations in a19 There exists a general method for onstruting an SU(2) symmetri spin model with short range interationssuh that all the nearest neighbor VB states are ground states [28℄. Building on this idea, it was possible toonstrut SU(2) symmetri spin- 1

2
models (with short ranged interation) with a gapped QSL ground state [29℄.Although ompliated, these models are among the very few examples where the ground state is well establishedto be a short ranged resonating VB liquid.20The ground states of HMG spontaneously break the translation symmetry. On the Husimi atus, the groundstate is highly degenerate. The Shastry-Sutherland ground state does not break any symmetry (the ground stateis unique), but the lattie has an even number of spins per unit ell and should be onsidered as a band insulatorin our lassi�ation.21Whatever the nearest neighbor VB state, exatly 1/4 of the triangles have no singlet bonds.22The situation is very di�erent in 1D. In the Majumdar-Gosh model, one an get a �nite energy state with two11



VBC. The ordered VB bakground is a medium whih on�nes the spinons in pairs. Sine anRVB state should instead be viewed as a liquid (no broken symmetry, no long range order),it is reasonable to expet the spinons to be able to propagate as independent partiles. Aswe will see in the next setion, the proper way to address this question of on�nement anddeon�nement of spinons is to understand the emergene of gauge degrees of freedom in thesesystems.6 Shwinger bosons, large-N limit, and Z2 topologialphase6.1 Shwinger bosons representationThe spin wave approah is a large-S approah and is unable to apture highly quantum stateswhih are rotationally symmetri, suh as RVB wave funtions. From the disussion of Se. 5,it is natural to look for a desription in terms of singlet �elds leaving on bonds, and ableto desribe the presene or absene of a singlet between two sites. Suh variables appearnaturally when using the Shwinger boson representation of the spin operators [35, 36℄.At eah site, two types of bosons arrying a spin �up� and �down� are introdued: a†
i↑ and

a†
i↓, and the spin operators are represented as bilinears in the boson reation and annihilationoperators

Sz
i =

1

2

“

a†
i↑ai↑ − a†

i↓ai↓
”

, S+
i = a†

i↑ai↓ , S−
i = a†

i↓ai↑ (25)With these relations, the ommutation relations [Sα
i , Sβ

i ] = iǫαβδSδ
i are automatially veri�ed.The total spin reads ~S2

i = ni

2

`

ni

2
+ 1

´, where ni = a†
i↑ai↑+a†

i↓ai↓ is the total number of bosonsat site i. To �x the length of the spins, the following onstraint must therefore be imposedon physial states:
a†

i↑ai↑ + a†
i↓ai↓ = 2S (26)With this representation,23 the Heisenberg interation is of degree four in the boson op-erators and an be written

~Si · ~Sj = S2 − 1

2
(Aij)

†Aij (27)
with Aij = ai↑aj↓ − ai↓aj↑. (28)The bond operators A†

ij behave as a singlet reation operators: A†
ij , when applied onto theboson vauum, reates a spin singlet | ↑i↓j〉− | ↓i↑j〉 and, from Eq. 27, A†

ijAij is proportionalto the number (0 or 1) of a singlet between sites i and j. In addition, Aij is invariant underrotations: rede�ning the bosons by an SU(2) matrix P : »

a↑
a↓

–

→ P

»

a↑
a↓

– leaves Aijunhanged.246.2 Mean �eld approximationArovas and Auerbah [35℄ suggested an approximation in whih the interation is deoupledusing mean-�eld expetation values
A†

ijAij −→ A†
ij〈Aij〉 + 〈A†

ij〉Aij − |〈A†
ij〉|2 (29)and to replae the onstraint (Eq. 26) by a ondition on the average number of boson per site

〈a†
i↑ai↑ + a†

i↓ai↓〉 = 2S. (30)remote spinons by introduing a domain wall in the dimerization pattern in 0 and i.23Fermions an also be used, leading to other very interesting theories for (gapped of gapless) QSL [37, 38, 12℄.24 Aij an be written using the 2 × 2 antisymmetri tensor ǫ =

»

0 −1
1 0

–: Aij =
P

σ,σ′=↑,↓ ǫσσ′aiσajσ′ . Therotation invariane of Aij follows from the fat that any P ∈ SU(2) satis�es P tǫP = ǫ.12



By this replaement, the Hamiltonian beomes quadrati in the boson operator
H −→ HMF[Q0

ij , λ
0
j ] = −1

2

X

ij

“

A†
ijQ

0
ij + Q̄0

ijAij

”

−
X

i

λ0
i

“

a†
i↑ai↑ + a†

i↓ai↓ − 2S
”

+ cst. (31)A hemial potential λ0
i has been introdued at eah site to tune the boson densities so thatthey satisfy Eq. 30. The mean �eld Hamiltonian HMF (and thus its ground state |0〉) dependson the omplex parameters Q0

ij (one for eah pair of sites ij where Jij 6= 0). These parametershave to be adjusted to satisfy the self-onsisteny onditions on eah bond
Q0

ij =
1

2
Jij〈0|ai↑aj↓ − ai↓aj↑|0〉. (32)As in the spin wave approah, the Heisenberg model has been redued to a quadrati bosonmodel (here with some self onsisteny onditions). However, the ruial di�erene is that thepresent formalism does not impose any preferred spin diretion: giving a �nite expetationvalue A0

ij 6= 0 to the operator Aij does not break the SU(2) symmetry � whih is a neessaryondition to desribe a QSL.Generally speaking, two family of solutions an be found at this mean �eld level. In the�rst lass, favored when S is large, the Shwinger boson Bose-ondense in some partiularmode. Beause they arry a spin index, suh ondensate state (spontaneously) breaks the
SU(2) symmetry. These solutions desribe Néel states with long range spin-spin orrelations.In suh ases, the Shwinger boson mean-�eld theory is essentially equivalent to the spin waveapproah (Se. 3).The seond lass orresponds to (mean �eld) QSL states. There, the ground state isrotationally invariant, and the Bogoliubov quasi partiles obtained by diagonalizing HMF aregapped. Sine the orresponding reation operators, b↑,α and b↓,α, are linear ombinationsof the original bosons, these exitations also arry a spin 1

2
. The most important questionis whether the existene of these deon�ned (free in the mean �eld approximation) spinonsis an artifat of the mean �eld approximation, or if they ould survive in some Heisenbergspin model. In the �rst a ase, the inlusion of the �utuations that were negleted wouldon�ne the spinons and would deeply hange the nature of the ground state. The mean-�eldpiture of a fully symmetri state with non interating spinons exitation is then qualitativelyinorret. Another possibility is that the spinons remains deon�ned, even in presene of�utuations. In that ase, the mean-�eld approximation is a very useful starting point. Wewill disuss in Se. 6.5 a senario where it is the ase. But before, we need to introdue thebasi formalism that is needed to desribe the �utuations about the mean �eld solution, andemergene of gauge degrees of freedom in the system. The entral question onerning thelong distane and low energy properties of the system will be whether these gauge degrees offreedom on�ne or not the spinons.6.3 Large N , saddle pointTo disuss the role of the �utuations negleted in Eq. 29, it is neessary to formulate themean �eld approximation as a saddle point approximation in path integral formulation of themodel. It will then be possible to identify the struture of the most important �utuationsabout the saddle point. To do so, one dupliates N times the two speies of bosons (↑ and ↓).In addition to the site and up/down indies σ, the boson operators now arry an additional��avor� index m = 1, · · · ,N . The Hamiltonian and the onstraint are then generalized to

H = − 1

2N
X

ij

JijA
†
ijAij (33)

Aij =
N

X

m=1

aim↑ajm↓ − aim↓ajm↑ (34)and
N

X

m=1

a†
im↑aim↑ + a†

im↓aim↓ = 2NS. (35)13



For N = 1, this model is Heisenberg model with SU(2) symmetry. For N > 1, this modelhas an enlarged symmetry given by the group Sp(N ).25 S is a parameter of the model, andis no longer related to a representation of SU(2) if N > 1. The bond operator Aij is a sumover all the �avors. For this reason, in the limit where N is very large, the �utuations of Aijbeome negligible ompare to its expetation value and the approximation made in Eq. 29beomes exat.A formal way to establish this result is to adopt a formulation of model where the partitionfuntion Z = Tr
ˆ

e−βH
˜ at temperature T = β−1 is expressed as a oherent state path integralover omplex variables zimσ(τ ) (in orrespondene with the boson operators aimσ) whih areperiodi funtions of the imaginary time τ ∈ [0, β[. In this formalism the partition funtionreads 26
Z =

Z

D[zimσ(τ ), λi(τ )] exp

„

−
Z β

0

L0 dτ

« (36)
L0 =

X

i m σ

z̄imσ∂τzimσ − 1

2N
X

ij

JijA
†
ijAij

+i
X

i m

λi (z̄im↑zim↑ + z̄im↓zim↓ − 2S) (37)
Aij =

N
X

m=1

(zim↑zjm↓ − zim↓zjm↑) , (38)where a Lagrange multiplier λ has been introdued at eah lattie site and eah time stepto enfore the onstraint (Eq. 35) exatly (to simplify the notations, the τ dependene of all�elds is impliit).Now, a Hubbard-Stratonovih transformation is performed :
Z =

Z

D[zimσ(τ ), λi(τ ),Qij(τ )] exp

„

−
Z β

0

L1 dτ

« (39)
L1 =

X

i m σ

z̄imσ∂τzimσ +
X

ij

„

2N
Jij

|Qij |2 − Q̄ijAij − QijĀij

«

+i
X

i m

λi (z̄im↑zim↑ + z̄im↓zim↓ − 2S) (40)This new formulation involves an additional omplex �eld Qij on eah bond. The equivaleneof L1 with the initial Lagrangian L0 an simply be heked by performing the Gaussianintegrations over Qij(τ ) for eah bond and eah time step: R

D[Qij(τ )] exp
“

−
R β

0
L1 dτ

”

=

exp
“

−
R β

0
L0 dτ

” (up to a multipliative onstant). At this point, the N �avors of partilesare no longer oupled to eah other, but are oupled to a ommon bond �eld Qij . So, fora �xed spae-time on�guration of Q, we have N independent opies of the same boson25 The simpleti group of 2N × 2N matries Sp(N ) is the set of matries P whih satis�es P tJP = J , where
J =

2

6

6

6

6

6

4

0 1
−1 0 . . .

0 1
−1 0

3

7

7

7

7

7

5

generalizes the antisymmetri ǫ tensor.26 For an introdution to the path integral formalism in this ontext of quantum magnetism, see for in-stane Ref. [36℄. We sketh the main steps of the derivation in the ase of a single bosoni mode [a, a†] = 1.For any omplex number z, a oherent state |z〉 = eza† |0〉 is de�ned. These states satisfy: a|z〉 = z|z〉,
〈z|z′〉 = ez̄z′ and the resolution of the identity 1

π

R

d2z |z〉〈z|e−|z|2 = 1. On writes the partition funtionas a produt over Nτ imaginary time steps Z = Tr
ˆ

e−dτHe−dτH · · ·
˜

= limNτ→∞ Tr [(1 − dτH)(1 − dτH) · · ·]with dτ = β/Nτ . Then, the identity is inserted at eah step: Z = limNτ →∞
R

“

QNτ
τ=1 d2zτ

”

e−|z1|2〈z1|1 −
dτH|zNτ

〉e−|zNτ
|2 〈zNτ

|1 − dτH|zNτ−1〉 · · · e−|z2|2〈z2|1 − dτH|z1〉. Next, we write e−|zi|2〈zi|1 − dτH|zi−1〉 ≃
exp [−z̄i(zi − zi−1) − dτH(z̄i, zi−1)], where the omplex number H(z̄, z′) = 〈z′|H|z〉 is obtained by writing theHamiltonian in a normal-ordered form an replaing a† by z̄ and a by z′. Taking the ontinuous time limit dτ → 0is formally written as zi − zi−1 → ∂τ z(τ)dτ and �nally leads to Z =

R

D[z] exp(−
R β
0 Ldτ) with the Lagrangian

L = z̄(τ)∂τ z(τ) + H(z̄(τ), z(τ)). 14



system. In addition, the Lagrangian L1 is now quadrati in the z variable. We note G−1
Q,λthe orresponding quadrati form, a big matrix whih has spae (i), time (τ ), spin (σ) andomplex onjugay (z versus z̄) indies (but no �avor index), and depends on the auxiliary�eld Q and λ. L1 is then

L1 =
X

ij

2N
Jij

|Qij |2 − 2iNS
X

i

λi

+
X

m

[z̄iσ(τ ); ziσ(τ )] G−1
Q,λ

»

zjσ′(τ ′)
z̄jσ′(τ ′)

– (41)Performing the Gaussian integral over the z �elds is now simple, as it gives (det[G])N , alsoequivalent to eNTr[log(G)]. The partition funtion is now expressed as a path integral with the�elds Q and λ only, but with a ompliated non-Gaussian weight:
Z =

Z

D[ziσ(τ ), λi(τ ),Qij(τ )] exp

„

−N
Z β

0

L2 dτ

« (42)
L2 = +

X

ij

2

Jij
|Qij |2 − 2iS

X

i

λi + Tr[log(GQ,λ)] (43)Here, the �avor indies m have disappeared and N only appears a global multipliative fatorin the ation. With this formulation of the Sp(N ) �spin� model, it is lear that, in the limit
N → ∞ the partition funtion will be dominated by the on�gurations (Q0, λ0) whih aresaddle points of the ation S [Q,λ] =

R β

0
L2 dτ . In other words the �utuations of Qij and λiare frozen when N → ∞. Suh saddle points are obtained by requiring

∂S
∂λi(τ )

˛

˛

˛

˛

Q0,λ0

= 0 ,
∂S

∂Qij(τ )

˛

˛

˛

˛

Q0,λ0

= 0. (44)(45)and in most ases they are found to be time independent Q0
ij(τ ), λ0

i (τ ) → Q0
ij , λ

0
i . Theequations above an then be shown to be equivalent to the self onsisteny onditions ofEqs. 30 and 32, with Q0

ij =
Jij

2N
P

m〈0|aim↑ajm↓ − aim↓ajm↑|0〉.6.4 Flutuations about a saddle point and gauge invarianeWe are now ready to disuss the �utuations that are present when N is �nite, where the�eld Qij(τ ) is able to �utuate around its mean �eld value Q0
ij . Treating all the possible�utuations is ertainly very di�ult, as it would amount to solve the original spin problem.A possible approah is to ompute perturbatively the �rst 1/N orretions to the mean�eld results [35℄. However, this an miss some important e�et (instabilities) whih are notperturbative in 1/N , and will generally not shed light on the issue of spinon on�nementthat we are interested in. Instead, as in [39, 40℄, we will examine the qualitative struture ofthe �utuation modes whih are important for the long distane properties of the system. Inpartiular, we would like to know if some �utuations ould on�ne the spinons (in whih asethe mean �eld piture is inorret), or if the QSL state is stable at �nite N . As we will see,there are some �utuations modes whih are desribed by a gauge �eld [39, 40℄ and mediatesome (possibly long ranged) interation between the spinon. The dynamis of this gauge �eldis therefore ruial to the physis of the spin system. In some ases this gauge �eld will bein a on�ning phase, and the N = ∞ limit (where the �utuations are frozen out) does notrepresent the physis of the �nite N models [39℄. In some other situations, the gauge �eldhas a deon�ned phase and a QSL state with elementary spinon exitation is possible [40℄.First, it should be notied that the desription of the spin operators with Shwinger bosonsis redundant in the sense that an arbitrary loal hange of phase in the boson operators doesnot hange the physial spin operators. In the path integral formulation, this beomes a fullspae-time gauge invariane. The Lagrangian L1 (Eq. 40) is invariant under

zimσ(τ ) −→ eiΛi(τ)zimσ(τ ) (46)
Qij(τ ) −→ ei(Λi(τ)+Λj(τ))Qij(τ ) (47)
λi(τ ) −→ λi(τ ) − ∂τΛi(τ ) (48)15



where Λi(τ ) is some arbitrary angle at eah site and time step.However, this loal U(1) gauge invariane is broken to a smaller invariane group in theviinity of a saddle point (Q0, λ0). This an be illustrated the simpler ontext of a lassialferromagneti Heisenberg model. A ground state is magnetized in one partiular diretionand thus breaks the O(3) symmetry of the Hamiltonian. The theory for the (transverse) spindeviations around this ferromagneti state has an O(2) symmetry, an not O(3). The situationis similar for the �utuations of the bond �eld Qij . Although the model has a loal U(1)gauge invariane, the ation desribing the �utuations around Q0
ij have a lower invarianegroup. In the ferromagnet example, we look at the rotations under whih the ground stateis unhanged. Similarly, we look for the gauge transformations whih leave Q0

ij unhanged.These transformations form the invariant gauge group (IGG) of the saddle point, a oneptintrodued by X. G. Wen [41℄. A gauge transformation i 7→ Λi belongs to the IGG of Q0
ij ifit is stati and satis�es

Q0
ij = Q0

ije
i(Λi+Λj) (49)If the lattie made of the bonds where Q0

ij is non zero is bipartite, it is easy to show that
Λi = θ on sublattie A and Λi = −θ on sublattie B satis�es Eq. 49 for any (global) angle θ.In suh a ase, the IGG is isomorphi to U(1). On the other hand, if the lattie of the bondswhere Q0

ij 6= 0 is not bipartite, the IGG is isomorphi to Z2, sine Λi = π and Λi = 0 are theonly two solutions to Eq. 49 when Q0
ij 6= 0.The general result [41℄ is that, among the �utuations around the saddle point Q0, somemodes are desribed by a gauge �eld. with a gauge group given by the IGG. We will illustratethis result in the simple ase IGG= Z2.276.5 Z2 gauge �eldIf the IGG is Z2, the important �utuations turn out to be �utuations of the sign of Qij .We therefore parametrize these �utuations in the following way

Qij(τ ) = Q0
ij eiAij(τ) , Aij(τ ) ∈ {0, π}. (50)where the �eld Aij will play the role of a �disrete� (Z2) vetor potential living on the linksof the lattie (pairs of sites where Q0

ij 6= 0).Doing the integration over all the other �utuation modes (amplitude �utuations thebond �eld Qij , �utuations of λi, et.) in order to obtain an e�etive ation for Aij andthe bosons ziσ only28 is formally possible, but it is of ourse a very di�ult task in pratie.One an instead determine the symmetry onstraints, and, in a Landau-Ginzburg type ofapproah, onstrut the simplest ation ompatible with these symmetries.For this, we onsider the (stati) loal gauge transformation i 7→ Λi with the restrition
Λi ∈ {0, π}. Beause Aij is de�ned modulo 2π, −Λj is equivalent to +Λj and the transfor-mation rules take the usual form (exept for the disrete nature of Aij):

ziσ −→ eiΛiziσ (51)
Aij −→ Aij + Λi − Λj . (52)These loal transformations form a very large symmetry group (2 to the power of the numberof lattie sites) and severely onstrain the e�etive Hamiltonian for these degrees of freedom.Beause of this invariane, a term like Aij , A2

ij or even cos(Aij) annot appear as an en-ergy term.29 Instead, only the produts of eiAij on losed loops are gauge invariant. As airulation of the a vetor potential, these loop terms are the analog of the magneti �ux ineletromagnetism. Suh produts an thus appear in an e�etive desription of the �utua-tions about the mean �eld solution. Terms like Eij = ∂τAij + λi − λj , whih are equivalentto the eletri �eld, are also gauge invariant. As for the ouplings to the bosons, the ouplingto A allowed by the gauge invariane (an spin-rotations) are of the type z̄iσ eiAij zjσ.27The ases where IGG= U(1) are generially unstable saddle points: the gauge �utuations lead to spinonon�nement, and lattie symmetry breaking (VBC) when S = 1
2
[39℄. This will not be disussed here.28From now on, we go bak to N = 1 a drop the �avor index m for simpliity.29In the same way, a a mass term like the square of the vetor potential A2

µν is forbidden by gauge invariane inonventional eletromagnetism. 16



6.6 A simple e�etive modelWe an ombine the gauge invariant terms above into a simple Hamiltonian whih an phe-nomenologially, when IGG=Z2, desribe the gauge �utuations about a saddle point andtheir e�et on the spinons:
H = −K

X
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ijσ

z
jkσz

klσ
z
li − Γ
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〈ij〉
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ij
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„
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# (53)The operator σz
ij has eigenvalues ±1, like a pseudo spin- 1

2
, and orresponds to eiAij in thepath integral formulation (Eq. 50). σx

ij orresponds to the eletri �eld operator. In the pathintegral, Aij and Eij are onjugated. So σx
ij and σz

ij should not ommute on the same bond.The natural hoie in our disrete ase is σx
ijσ

z
ij = −σz

ijσ
x
ij . So, σx

ij and σz
ij are the x and

z omponents of the pseudo spin- 1
2
. The bosons represent the Bogoliubov quasi partiles(spinon) of the mean �eld Hamiltonian. The �rst term (K) is a sum over all the elementaryplaquettes (square here for simpliity) and orresponds to the magneti energy of the gauge�eld. The seond term (Γ) is the eletri energy, whih generates �utuations in the magneti�ux. The third one (t) desribes the spinon hopping and their interation with the gauge�eld. The last terms represents the energy ost ∆ > 0 to reate a spinon (related to the spingap of the spin model) and some (large) penalty V when more than one spinon are on thesame site.This model is of ourse not diretly related to the original spin model but ontains the sametwo important ingredients that have been identi�ed in the large N limit (spinon oupled to

Z2 gauge �eld �utuations) and an provide as a simpli�ed and phenomenologial desriptionto a gapped QSL.Beause of the gauge symmetry, the physial Hilbert spae of the model should be on-strained to avoid spurious degrees of freedom: two states whih di�er by a gauge transfor-mation orrespond to a single physial state and should not appear twie in the spetrum.In the Hamiltonian formulation of gauge theories, the solution is to onstrut the operators
Ui0 whih generate the loal gauge transformations, and impose that all the physial statesshould be invariant under these transformations: Ui0 |phys.〉 = |phys.〉 ∀i0. In the presentase, an elementary gauge transformation at site i0 hanges the value σz

i0j for all neighbors
j of i0 (noted j ∈ +). In addition, it hanges the sign of the boson operators in i0. Thistransformation is implemented by the following unitary operator

Ui0 = exp
h

iπ(b†i0↑bi0↑ + b†i0↓bi0↓)
i

Y

j∈+

σx
i0j (54)The onstraint Ui0 = 1 is the lattie version of the Gauss law, div ~E = ρ, in eletromagnetism,and the spinons appear to play the role of the �eletri� harges.Readers familiar with lattie gauge theories will have reognized the Hamiltonian formula-tion of a Z2 gauge theory [42℄. However, to show that the ground state of this model realizesa topologial phase (when Γ is small enough), we will show that it is very lose to the toriode model introdued by Kitaev [3℄.6.7 Tori ode limitOne goal of these notes was to show that (gapped) QSL in Mott insulators are topologiallyordered states with emerging gauge degrees of freedom. To onlude, we will now take advan-tage of Kitaev's letures of topologial states of matter (in this shool), and show the loseonnetion between the large N desription of gapped QSL and Kitaev's tori ode [3℄.We onsider the limit of Eq. 53 when t = 0, Γ = 0 and V = ∞. In this limit, the bosonsannot hop any more, and an only be zero or one per site: ni = b†i0↑bi0↑ + b†i0↓bi0↓ ∈ {0, 1}.Using Ui = 1 (Eq. 54) we �nd: eiπni =

Q

j∈+ σx
ij , so that the boson oupation numbers are17



expressed in terms of the (lattie divergene of the) eletri �eld operators: 2ni = 1−Q

j∈+ σx
ij .Taking The Hamiltonian an then be written as

H = −K
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ijσ

z
jkσz

klσ
z
li −
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2
∆

X

i

Y

j∈+

σx
ij (55)whih is exatly the (solvable) tori ode Hamiltonian [3℄.We an now import some results from the tori ode analysis. Although simple derive inthe framework of Eq. 55, they are highly non trivial from the point of view of the originalspin model. First, the ground state breaks no symmetry and the spinons (here at the sites iwith Q

j∈+ σx
ij = −1) are free partiles, they are not on�ned by the gauge �eld �utuations.Seondly, the ground state is degenerate on a ylinder or on a torus (periodi boundaryonditions), as required by the LSMH theorem. The ground state are topologially orderedin the sense that no loal observable an distinguish the di�erent ground states. Beyondthe spinons, the model also have Z2-vortex exitations, whih orrespond to plaquettes with

σz
ijσ

z
jkσz

klσ
z
li = −1. These gapped exitations are singlet states in the original spin modelsine the bond �eld Qij and its sign �utuations σz
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