
ar
X

iv
:0

80
9.

30
51

v1
  [

co
nd

-m
at

.s
tr

-e
l]

  1
8 

Se
p 

20
08

1

Quantum dimer models

R. Moessner and K. S. Raman

1 Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany
moessner@pks.mpg.de

2 University of California at Riverside, Riverside, CA 92521 kumar.raman@ucr.edu

1.1 Introduction

The study of simple model Hamiltonians to describe magnetic systems has
a long tradition in condensed matter and statistical physics. Starting with
the initial analyses of the Ising and Heisenberg models, our understanding of
the collective behaviour of matter, and of countless magnetic materials, has
been advanced greatly. In particular, magnetic ordering phenomena have pro-
vided a stable basis for our understanding of order and spontaneous symmetry
breaking. The ordered state of the ferromagnet, and the Néel state of an anti-
ferromagnet, are two particularly simple, and familiar, examples of orderings
which occur at low temperature.

Beyond such simple examples, qualitatively different types of behaviour
have been uncovered both in experiment and in theoretical studies. This chap-
ter is devoted to an expose of the Rokhsar-Kivelson quantum dimer model [1],
a model Hamiltonian which captures the physics of some of these new phe-
nomena in a particularly simple and transparent way. In pictorial form, the
RK-QDM Hamiltonian on the square lattice reads:

=   ∑-t(   〉〈    +h.c.)+v(   〉〈   +   〉〈    )
QDM

H

(1.1)

Its historical origin lies in the study of high-temperature superconductors,
where it was proposed by the two scientists whose names it now bears as a
description of the short-range flavour of Anderson’s resonating valence bond
physics [2–4] – for a few words on history, see the review [5]. In this formu-
lation, a dimer represents an SU(2) singlet bond between two spins located
at its endpoints, and the model describes the quantum dynamics of a singlet-
dominated phase: the first, kinetic, term in the above Hamiltonian describes a
‘resonance’ between two different dimerisations of a plaquette. The analogy to
the resonance between the two dimerisations of the benzene ring is the origin
of the apellation RVB.

http://arXiv.org/abs/0809.3051v1
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However, the RK-QDM has since graduated from this field and has increas-
ingly been used to describe new and unusual forms of collective behaviour in
a broader variety of settings. A survey of these forms the backbone of this
chapter. We will encounter new types of order (topological and quantum or-
der), unusual (resonons and visons) and fractionalised (spinons and holons)
excitations, and exotic critical points.

1.2 How quantum dimer models arise

1.2.1 Link variables and hard constraints

What is the difference between a quantum dimer and a quantum spin model?
While we tend to think of spins living on sites of a lattice, a dimer degree of
freedom is more naturally associated with a link: a dimer living on a link can
be thought of as connecting the two nearest neighbor sites which are located
at its endpoints.

There is a certain arbitrariness in calling a variable a site or a link variable.
However, the Hilbert space of a dimer model is defined by enforcing a hard
constraint on the sites of the lattice, i.e. where the links meet. This constraint
consists of demanding that each site forms a dimer with one, and only one,
of its nearest neighbors. Therefore, the configurations included in the dimer
Hilbert space are the set of nearest-neighbor dimer coverings of the lattice and
superpositions thereof. This constraint thus prohibits monomers, i.e. sites not
attached to any dimer (Fig. 1.1a); higher-order polymers (Fig. 1.1b), in which
three or more sites are connected together; or long-range dimers between sites
that are not nearest-neighbors (Fig. 1.1c). The connection of this idea with
gauge theories will be discussed below. In this chapter, we will use the term
“dimer” to mean “nearest-neighbor dimer”.

Much of the new physics captured by QDMs relies on this constraint. Such
constraints are a common theme in modern many-body physics. They typi-
cally arise when the Hamiltonian contains an overwhelmingly large energy
scale which needs to be taken into account at the very outset. Such a con-
straint may be present in the form of a large onsite Coulomb repulsion (i.e.
a “Hubbard-U”), which prohibits more than one electron to be present on
a lattice site; in a frustrated magnet, it may be due to a large ground-state
manifold obeying a certain local ground-state constraint, as described in the
following section.

Much of the discussion in this chapter applies more generally to systems
in which the (effective) Hilbert space incorporates (i) a non-trivial local con-
straint and (ii) a local quantum dynamics. Let us point out at this stage that
(ii) tends to be much harder to achieve than (i), and we discuss point (i) first.

This definition includes, for instance, quantum vertex, ice, and coloring
models, fermionic derivatives of RK-QDMs, and much more. In fact, the reader
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(c)

(b)

(a)

Fig. 1.1. Constraints. Left: The hardcore constraint of the quantum dimer model.
Also shown are defects which violate this constraint including: (a) monomers, (b)
higher-order polymers, and (c) long-range dimers. Right: The local structure of ice
involves protons (red, small dots) bonded to oxygens (blue, large dots).

may now, with some justification, be alarmed at the broad scope of this def-
inition, and is therefore invited to draw the somewhat arbitrary line of what
to include in this class of ‘locally constrained models’ more restrictively. As a
guide, we present a number of examples in the following.

1.2.2 The origin of constraints

The original motivation for the quantum dimer model was high-temperature
superconductivity, in particular the quest for a non-magnetic parent state
of the superconducting phase. To minimise their antiferromagnetic exchange
energy, neighbouring pairs of spins would form singlet bonds, denoted by a
dimer. The dimer constraint reflects the fact that each spin can form a singlet
bond with at most one of its neighbours. More generally, dimer models can be
thought of as a simple starting point for describing phases of magnets dom-
inated by local singlet formation. Such unusual magnetic phases are covered
in this volume in the chapter by Misguich.

An even older, probably the first, example of a similar constraint is found
in ice. There, oxygen atoms are connected by a network of hydrogen bonds
into a four-fold coordinated lattice. The protons binding the oxygens together
sit asymmetrically on each bond, but not randomly so: each oxygen has two
protons sitting close to it, and two far away, so that H2O molecules effectively
retain their identity. This constraint is one of the Bernal-Fowler ice rules [6].
Defining an Ising variable Sz = ±1 according to whether a proton is far away
or close to a particular set of oxygen atoms, one finds the ice rules encoded
by the ground-states of the Hamiltonian

H = J
∑

〈ij〉
Sz

i Sz
j = J

∑

α

(
4

∑

iα=1

Sz
iα

)2 , (1.2)



4 R. Moessner and K. S. Raman

where the sum on 〈ij〉 runs over neighbouring pairs of hydrogen bonds, α runs
over oxygen sites, and iα over the four bonds of each oxygen.

It was in Anderson [7], back in 1956, who realised that this Hamiltonian
describes a range of systems: in particular, antiferromagnetically coupled Ising
spins on the pyrochlore lattice would at low temperature also map onto the
ice model, with the sum on i now running over the four sites of a tetrahedron,
the basic building block of the ice lattice. For details, see Gingras’ article on
spin ice in this volume.

This avenue of investigation has more recently reappeared in the study
of charged particles partially covering a lattice, where electrostatics at short
distances imposes the constraint that the system be as neutral as possible. [8]
For charge ordering, the Ising spins will thus encode the ionisation state of an
ion.

Similarly, for particles subject to short-range repulsion, Si stands for
whether a given site is empty or occupied. This Hamiltonian has thus played
an important role for supersolid phases of bosons on optical lattices. [9–12]

1.2.3 Tunable constraints

A generalisation of the above Hamiltonian 1.2 is obtained by adding a field h
(in reduced units) pointing in the z-direction:

H = J
∑

α

(
4

∑

iα=1

Sz
iα

)2 −
∑

i

hSz
i = J

∑

α

(
4

∑

iα=1

Sz
iα

− h/2)2 , (1.3)

where we have dropped a constant involving h2. h assumes different meanings
(electric field, particle density, and so on) in the different contexts mentioned
above.

Crucially, h allows the selection of a sector of the theory [13] by imposing
that the lowest energy states obey a local constraint of minimising:

Lα = |
4

∑

iα=1

Sz − h/2 |. (1.4)

For very large h, this is minimised by Sz ≡ 1, which implies a trivial
ground state manifold consisting only of the maximally polarised state. As h
is reduced, it becomes favourable at first to flip a spin on exactly one of the
links emanating from each site α. Denoting the link with a flipped spin by
a dimer yields a hardcore dimer model. As h is lowered further, it becomes
advantageous to flip a second spin, which in turn gives a loop model: at each
site α, two links are special, which can be identified with a loop passing
through the site. 3 On the square lattice, this gives the ice model. Continuing

3We can identify the two special links as part of a “string” passing through the
site. As the reader may verify, the constraint that every site has two such links
requires the strings to form closed loops.
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this process requires increasingly coordinated sites to yield new sectors – for
the six-fold coordinated triangular lattice, the three-dimer manifold at h = 0
generates the basis states for the easy-axis kagome ring exchange model. [14]
Back in the language of magnetism, these sectors manifest their presence
via magnetisation plateaux, as they are stable for finite ranges of field and
correspond to different average local, and hence global, magnetisations.

As an aside, we remark that at the special values of the field where two sec-
tors with different magnetisations are degenerate, the space of allowed states
contains the allowed states from both sectors but also additional states 4; such
an energy crossing occurs, for example, on the kagome lattice at zero field,
h = 0. This crossing is an interesting feature in itself, as it can give rise to
unusual signatures in the magnetothermodynamics; some examples are given
in Refs. [15–17].

In model systems in statistical mechanics, these constraints can, of course,
be imposed at will, and the dimer, vertex, ice, colouring etc. models have a
long history in statistical mechanics, in particular in d = 2 where many of
them are soluble. [18]

The archetypal setting in which local constraints play a central role are
gauge theories [19] – the local configuration space is defined by restricting
a much larger space to a ‘physical’ subspace by demanding that a gauge
constraint be satisfied. For instance in magnetostatics, of all possible vector
fields B, only those satisfying the no-monopole condition ∇ · B = 0 are
considered acceptable.

1.2.4 Adding quantum dynamics

The most popular route of adding quantum dynamics is by fiat. First, the set
of allowed classical configurations are elevated to basis vectors of a Hilbert
space. Next, one identifies the simplest local rearrangement permissible. This
does not typically involve a single link variable (e.g. removing one dimer)
as this would lead to a violation of the local constraint. Rather, one finds a
dynamics involving loops or plaquette flips – a number of examples are given
in Fig. 1.2.

One then endows such a flip with a coherent quantum dynamics captured
by a matrix element of strength t: for the square quantum dimer model, this
is just the kinetic term in Eq.( 1.1).

In the corresponding spin model, this plaquette dynamics can be due to
any term like a transverse field of strength Γ , a transverse exchange Jxy, or a
‘ring-exchange’ K around a plaquette 2:

Hq = −Γ
∑

i

Sx
i − Jxy

∑

〈ij〉
Sx

i Sy
j − K

∑

2

∏

i∈2

Sx
i (1.5)

4For example, when the dimer and loop models become degenerate, the space of
allowed sites will include states where some sites have one dimer emanating while
others have two.
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When projected onto the physical space, these terms may, in fact, lead to the
same effective Hamiltonian [20].

In the original paper by RK, an estimate of the strength of the kinetic term
t was provided in terms of the original magnetic exchange constant J of the
Heisenberg model but in general, the instances in which this is underpinned
by an actual microscopic calculation are few.5 The classical potential term, v
in the Hamiltonian (1.1), is often added for convenience, as it allows an RK
construction – this is described in detail below.

1.3 The quantum dimer model Hilbert space

1.3.1 Topological invariants

Before discussing the QDM Hilbert space, we first mention an important prop-
erty of the classical dimer model. Because of the hardcore constraint, the num-
ber of allowed configurations is much smaller than in a spin model defined on
the same lattice. For example, for a square lattice with N sites, the num-
ber is 2N while the number of ways to cover the square lattice with dimers
grows asymptotically as (1.3385...)N [24, 25]. The price of this reduction is
that it is no longer generally possible to view the system as being composed
of independent degrees of freedom on sites or links.

Put another way, for spin systems this latter property implies that any spin
configuration can be obtained from another spin configuration by a series of
local manipulations, i.e. by sequentially flipping the spins on appropriate sites.
However, because of the hard constraint, it is not possible to manipulate a
dimer without also moving other dimers. On a square lattice, the simplest
move is the plaquette flip mentioned above. A more general move involves
interchanging the occupied and empty links along a flippable loop as illustrated
in Fig. 1.3.

From this perspective, it is easy to see that there are quantities which
remain invariant under local manipulations of the type just described. For
example, on non-bipartite lattices such as the triangular lattice, the parity of
the number of dimers crossing a non-contractible reference line spanning the
lattice (Fig. 1.4a) is unaffected by local dimer rearrangements. One way to
see this is to note that any flippable loop will intersect this reference line an
even number of times so flipping the dimers on this loop will not change the
parity. Any local transformation involves flipping a sequence of such loops.
An analogous invariant exists for bipartite lattices such as the square lattice
(Fig. 1.4b).

However, if the system is defined on a torus, or on a surface of higher genus,
it is possible to make a flippable loop that intersects the reference line an odd

5Parameters in effective Hamiltonians have been estimated for frustrated mag-
nets in Refs. [21–23]
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1.2. The analog of Eq. 1.1 can be written for any constrained model by identi-
fying the simplest local rearrangement consistent with the constraint. For the hon-
eycomb lattice dimer model (a), the simplest move involves three dimers while for
the triangular lattice (b), there are three different (but symmetry-equivalent) types
of two-dimer moves. For the cubic lattice (c), it is again a two-dimer move which can
now occur in any plane and likewise in higher dimensions. In a loop model (d), each
site has two dimers. The simplest move involves two dimers and results in loops fus-
ing or separating. A Z2 gauge theory may be viewed as a generalized dimer (or loop)
model with a less restrictive constraint: instead of fixing the number of dimers per
site, we fix the parity. This means that each site contains either an odd (e) or even
(f) number of dimers and the simplest move is to exchange the empty and occupied
links on an elementary plaquette as shown. Note that under this dynamics, every

plaquette is flippable. In the six-vertex model (g), each site has two inward and two
outward arrows. In this case, the simplest rearrangement is to reverse the direction
of the arrows on a plaquette with circulation. In a coloring model (h), each site has
a red, green, and blue link. The most basic move exchanging involves six links.
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Fig. 1.3. An example of a flippable loop. The links between the dashed lines in
the figure on the left define a closed path where every other link is occupied by a
dimer. The figure on the right is obtained from the one on the left by switching the
occupied and empty links.

number of times by having the loop wind around one of the toroidal directions.
Such a nonlocal transformation will change the value of the “invariants” just
described which, in this context, are called winding numbers.

The winding numbers provide a natural way of partitioning the set of dimer
coverings into sectors. On a torus, the procedure works by first choosing two
reference loops that wind around the two toriodal directions. With respect to
these two loops, we define two winding numbers which we call Wx and Wy .
We define the sector (Wx, Wy) as the set of all dimer coverings with winding
numbers (Wx, Wy). Clearly, all dimer coverings in this set can be related to
one another by a sequence of local dimer moves. To move from one sector to
another requires a change in the winding number which involves at least one
nonlocal move. For more general surfaces, the sectors are defined by specifying
2g winding numbers where g is the genus of the surface – the genuses of a
sphere and a torus are 0 and 1, respectively.

While the sector labels (Wx, Wy) depend on our choice of reference loops,
the reader may verify that the sectors themselves depend only on the topology

of these loops, i.e. that they wind around the two toriodal directions. For this
reason, the sectors are commonly called topological sectors.

1.3.2 Topological order

To construct the QDM Hilbert space, the first step is to treat the set of dimer
coverings as a collection of vectors. A vector space is constructed by also
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(a) (b) (c)

Fig. 1.4. The dashed line is a reference line that fully spans the lattice, i.e. the line
may end on a boundary but not in the interior of the lattice. (a) For non-bipartite
lattices, the parity of the number of dimers crossing the reference line (i.e. whether
the number is odd or even) is unaffected if the dimer pattern is changed locally.
(b) For the square lattice (similar constructions apply for other bipartite lattices),
one may label the vertical lines of the lattice alternately as A and B lines. Then, if
NA(B) is the number of dimers crossing the reference line on A(B) lines, the quantity
NA−NB is invariant under local dimer rearrangements. If the system is defined on a
torus or cylinder, the reference line is actually a reference loop which winds around
one of the toroidal directions. (c) shows a non-contractible loop around a cylinder;
identifying the two open circles at the ends of the cylinder yields a torus.

allowing states that are linear superpositions of dimer coverings. To obtain
a Hilbert space, we need to define an inner product. The usual choice is to
declare the set of dimer coverings to be an orthonormal basis for the space.
6 In this chapter, we will still refer to these quantum basis vectors as “dimer
coverings”.

Operators acting on this dimer Hilbert space are characterized by exam-
ining the way they act on the individual dimer coverings. The RK-QDM and
other Hamiltonians considered in this chapter have the common feature of
being the sum of operators which act locally on dimers in the sense discussed
above. For such systems, the winding numbers discussed above are good quan-
tum numbers and it is natural to subdivide the Hilbert space into dynamically
independent topological sectors corresponding to different values of the wind-
ing number.

A topological sector is the subspace spanned by the set of all dimer cover-
ings with a given winding number. The number of topological sectors depends

6A recent preprint by Paul Fendley argues that a more complex inner product
may be a better choice in some settings [26].
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on the lattice geometry and topology as in the classical case. However, depend-
ing on the lattice and also the terms included in the Hamiltonian, it may be
possible to subdivide the topological sectors into even finer dynamical sectors.
This is because quantum fluctuations only generate dimer rearrangements by
repeated application of the kinetic terms included in the Hamiltonian. For the
basic RK Hamiltonian Eq. 1.1 on the square lattice, the kinetic term is be-
lieved to be ergodic within each topological sector so a further subdivision of a
topological sector is not possible. This is not the case for the RK Hamiltonian
on a triangular lattice. [27]

This Hilbert space structure makes QDMs a natural setting in which to
construct and explore microscopic models of topological order [28]. Topolog-
ical order describes the situation in which the ground states in the different
topological sectors are exactly degenerate. To be more precise, consider the
triangular lattice QDM where each of the 2g winding numbers can take two
values corresponding to even and odd parity (Fig. 1.4a). In this case, for a
system of finite linear size L, there is a ground-state multiplet containing
22g = 4g states – one from each topological sector – separated by a gap from
the other states, and split among each other by an energy which vanishes
exponentially as exp[−cL], where c is some constant.7

Topological order is like conventional ‘local’ order in that it leads to a
low-lying multiplet of asymptotically degenerate states. However, it is fun-
damentally different in the following crucial respects. First, the degeneracy
depends on the topology of the lattice on which the system lives. Second,
there is no local order parameter which can be used to distinguish the ground
states in the different topological sectors. Rather, one needs to follow a ref-
erence line all the way around the system to count the number of dimers it
crosses. Whether the outcome is even or odd is uncertain until the line closes.

This is in stark contrast with an Ising ferromagnet, say, where the prefer-
ence of the spins to point up or down can be detected locally. Likewise, the
absence of conventional order in QDMs amounts to demanding that all local
dimer correlators decay exponentially with distance.

1.3.3 Fractionalisation

The concept of topological order was first discussed in the context of the
fractional quantum Hall effect [28] where its most striking consequence is
fractionalization [29]: the phenomenon that a gas of electrons can organize so
that its elementary excitations carry a fraction of the electron charge e and
obey fractional statistics, i.e. as if the electron has “split” into more basic
constituents.

In the current context, this phenomenon can be explained in simple pic-
tures by enlarging our Hilbert space to include monomer defects. Imagine
taking one dimer out of the system – this will leave behind two monomers

7More complex forms of topological order occur in different settings. [30]
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on the sites it occupied. These monomers can then be separated by shifting a
neighbouring dimer so that it occupies the site of one of the monomers. If the
monomers can be separated to large distances at finite cost in energy, they
are said to be deconfined. They can therefore act as independent quasiparti-
cles [31] – removing one dimer has given rise to two quasiparticles! The word
confinement is used here in analogy to the situation in quantum chromody-
namics, where it is impossible to separate a pair of isolated quarks at a finite
cost in energy – they are confined.

To make contact with some commonly used vocabulary, it is useful to view
the dimers as SU(2) singlets. The elementary magnetic excitation involves
replacing one of the singlets by some triplet state (Fig. 1.5a – we are ignoring
orthogonality issues here). Fractionalisation of the triplet then means that
two spin-1/2 excitations, ‘spinons’, can propagate independently.

Similarly, one can think of removing a single electron. As this electron was
part of a singlet bond, it leaves behind an unpaired electron. Again, if these
two defects can move apart at a finite cost in energy, the electron will have
fractionalised into the spinon carrying S = 1/2, and another quasiparticle
which is charged and spinless – known as a holon. This flavour of fractionali-
sation is known as spin-charge separation. [2]

Note that these particles – monomers i.e. spinons or holons – act as de-
fects that violate the hard constraint mentioned above. This is similar to what
happens in gauge theories, where Gauss’s law can allow for the presence of
charges: ∇ ·E = ρ. Monomers can similarly be treated as charges in a gauge-
theoretic description of the fractionalised phases. We note that RK-QDMs
provided the first theoretical examples of microscopic Hamiltonians with de-
confined fractionalized phases. [27]

1.4 QDM phase diagrams

1.4.1 General structure of phase diagrams

The presence of two terms in Eq. 1.1 immediately provides a one-parameter
(v/t) family of models. The detailed structure of the QDM phase diagram,
including which phases are present, depends strongly on the lattice geometry
and dimensionality. Also, new phases may appear if we perturb Eq. 1.1 with
additional interactions or consider less trivial ways of implementing the con-
straint (see Fig. 1.2). Nonetheless, there are a number of features common to
most models that are worth noting.

The Rokhsar-Kivelson point

One reason for the great popularity of RK-QDMs in recent years is rooted in
a particularly attractive feature they display by construction. This feature is
that when v = t, the ground state wave function of Eq. 1.1 is given by:
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(a) (b) (c)

Fig. 1.5. Monomers (spinons or holons). (a) A dimer can break into two monomers.
(b) In a resonating background, the monomers can separate and propagate as inde-
pendent excitations. (c) Separating monomers in a crystalline phase causes a string
of unfavorable bonds which requires an energy proportional to the length of separa-
tion.

|ΦGS〉 =

′
∑

|c〉 (1.6)

where |c〉 is a dimer covering and the prime denotes that the sum is over a
sector, that is to say a set of dimer coverings that is closed under repeated
action of the flip term in Eq. 1.1. In fact, we can construct such an equal
amplitude superposition in every sector and these special wave functions are
all degenerate ground states of Eq. 1.1 at v = t.

In the next section, we will derive Eq. 1.6 and discuss a number of special
properties of these wave functions. At the moment, we note that often the
dimer coverings contained in a sector will lead to an equal amplitude wave
function without any local order. However, a nonlocal measurement will be
able to detect the winding number of the topological sector in which the wave
function lies. Also, if the model is generalized to include monomers, we will
find that these excitations are deconfined, as shown heuristically in Fig. 1.5ab.

Due to these unique properties, the point v = t has been given a special
name: the Rokhsar-Kivelson point or RK point. The relation of the RK point
to the rest of the QDM phase diagram depends on the lattice. For a num-
ber of nonbipartite lattices in two and higher dimensions, including the 2d
triangular and 3d fcc, the RK point is part of a Z2 RVB liquid phase, which
has topological order. For a number of bipartite lattices in three and higher
dimensions, including the cubic lattice, the RK point is part of a Coulomb

phase, which is also a liquid phase but with a different type of quantum order.
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For a number of 2d bipartite lattices, including the square and honeycomb,
the RK point is a special critical point separating different crystalline phases.
The present understanding is that these behaviors should be generic.

Columnar phase

For v/t → −∞, the system will seek to maximize the number of flippable
plaquettes. The state which accomplishes this for the square lattice is the
columnar dimer arrangement shown in Fig. 1.6a. This state is four-fold de-
generate and breaks rotational symmetry and the symmetry of translation by
one lattice spacing along the direction of dimer orientation (i.e. the horizontal
direction in the figure).

The term columnar state is commonly used to denote the maximally flip-
pable state of a lattice, though the label is especially descriptive for the square
lattice. On the triangular lattice, the number of such states is exponentially
large in the linear size of the system. The columnar state is literally an eigen-
state only in the v/t → −∞ limit but a state with columnar correlations will
generally persist up to a value of v/t = (v/t)c < 1 which depends on the
lattice. [32–34] Therefore, we call −∞ < (v/t) < (v/t)c, the columnar phase.
In contrast to the RK point, monomers are linearly confined in the colum-
nar phase (Fig. 1.5c). Linear confinement is a generic feature of a crystalline
phase.

Staggered phase

For v/t → ∞. the system will seek to minimize the number of flippable plaque-
ttes. If the lattice permits dimer arrangements with no flippable plaquettes,
then these states will obviously be preferred. In terms of the above discussion,
such states will be the only occupants of their sectors in the dimer Hilbert
space. However, what is less trivial is that these states, if they are permitted,
will be the ground states for v/t > 1. We will see this explicitly in the next
section. For the moment, we point out that on the square lattice, there are, in
fact, exponentially (in the linear size of the system) many such states, one of
which is given in Fig. 1.6b. This arrangement is called the staggered state and
the term is commonly used to denote a non-flippable state of a general lattice.
In the triangular lattice QDM, by contrast, the number of non-flippable states
does not grow with the size of the lattice.

The nature of the phase diagram between the columnar phase and RK
point depends strongly on the details of the lattice. We now survey a number
of phases and features which have been seen in two and higher dimensions.

1.4.2 Z2 RVB liquid phase

The Z2 RVB liquid phase is an example of a phase with Z2 topological order.
[27] This means that for a two-dimensional lattice with periodic boundary
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(a) (b) (c)

Fig. 1.6. Examples of valence bond solids: (a) columnar state. (b) staggered state.
(c) plaquette state.

conditions, there are four degenerate gapped ground states. The ground states
are “liquids” in that all dimer correlations decay exponentially. This phase
was first discovered on the 2d triangular lattice [27] where current numerical
evidence [35] shows the phase lying in the interval 0.8 < v/t < 1. The present
understanding is that this phase is a generic feature of non-bipartite QDMs
in two and higher dimensions.8

The Z2 RVB liquid phase is notable for its nontrivial excitations. The
first point is that monomer excitations are deconfined throughout the phase,
not just at the RK point. In addition, there is a second class of excitations,
Ising vortices or visons [36], which live on the dual lattice. Fig. 1.7a depicts a
snapshot of a state with one vison, whose position is indicated by a dot on the
dual lattice; the dashed line extends to the boundary, if there is one, or, for a
torus, winds around the system and ends on one of the plaquettes neighboring
the dot. At the RK point, a variational wave function describing this state
is given by |vis〉 =

∑

c(−1)nc |c〉 where nc is the number of dimers crossing
the dashed line and the sum is over a sector. Note that |vis〉 is orthogonal
to the liquid ground state (Eq. 1.6) where the phase factor (−1)nc is absent.
There is numerical work which suggests the lowest lying excitation above the
triangular lattice ground state is, in fact, vison-like. [37].

The nontrivial feature of a vison is in its effect on the motion of monomers
as depicted in Fig. 1.7b. The process of moving a monomer around a vison can
be achieved by breaking a dimer into two monomers; holding one monomer
fixed and moving the other around the vison until the monomers meet again;

8On the kagome lattice, a dimer model with a Z2 liquid phase can be constructed
using multiple flip terms [39]. This latter construction is noteworthy because the
model is exactly solvable and the resulting liquid has no correlations beyond one
lattice spacing. This latter property makes the model particularly convenient for
calculations.
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and then fusing the monomers back into a dimer. The process is equivalent to
flipping the dimers along a flippable loop surrounding the vison. As the figure
indicates, the number of dimers crossing the dashed line will be changed by
±1 so the wavefunction will change sign.

We now return to an issue glossed over in our preliminary discussion of
fractionalization, namely the issue of statistics. What is the relative statistics
of the monomers? The answer is: “It depends”, as usual in d = 2, where statis-
tics is a question of energetics. Indeed, from the above discussion, it is clear
that the relative statistics of monomers changes if they bind to a vison. This
‘flux attachment’ can be achieved by altering terms in the Hamiltonian rather
than any native statistics of the monomer excitations, as has been shown ex-
plicitly in Ref. [38]. For the simple quantum dimer models, statistical trans-
mutation between Fermionic and Bosonic monomers is thus straightforwardly
possible. More complex anyonic, or even non-Abelian, statistics for defects in
these kind of models are currently actively being pursued, see e.g. [26].

As mentioned earlier, the Z2 RVB liquid has a higher dimensional ana-
log. For example, on the (non-bipartite) 3d three-dimensional fcc lattice with
periodic boundary conditions, the ground state is eight fold degenerate. The
visons are now defined in terms of loops instead of lines. The interaction of
a spinon with a vison involves the wave function acquiring a factor of (−1)n

where n is the number of times the spinon trajectory links with the vison loop.
As in the two-dimensional case, the relative statistics of monomers depends
on whether or not it is energetically favorable to bind a vison.

(a) (b)

Fig. 1.7. Visons. (a) Visons live on the dual lattice. (b) Taking a monomer around a
vison causes the number of dimers intersecting the dashed line, and hence the wave
function, to change sign.

1.4.3 U(1) RVB liquid phase

The U(1) RVB liquid phase is another kind of fractionalized liquid phase.
So far, it has only been observed on bipartite lattices in three and higher
dimensions, including the 3d cubic and diamond lattices. [40–42]

As with the Z2 RVB liquid, the U(1) RVB liquid has a distinctly quantum
type of order that is not captured by a local order parameter. However, its
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quantum order is different from the (also quantum) topological order of the
Z2 RVB liquid in a number of respects. The Z2 RVB liquid is a gapped
phase with exponential dimer correlations and a ground state degeneracy that
depends on the system topology. This degeneracy is an essential feature of
the entire phase9. In contrast, the U(1) RVB liquid is gapless with algebraic
dimer correlations. While the ground state does have a topologically related
degeneracy at the RK point (see Fig. 1.4b), this degeneracy will be lifted as
we enter the phase.

The U(1) RVB liquid also has deconfined monomers. However, in the Z2

RVB liquid, the monomers interact via a force whose range is a few lattice
spacings while in the U(1) RVB phase, the monomers interact via a long-
ranged inverse square force. 10

The U(1) RVB also has a gapped excitation analogous to the vison of the
Z2 RVB called a monopole for reasons that will become clear later. These
monopoles interact with each other via an inverse square force. The inter-
action between monomers and monopoles is directly analogous to the inter-
action between monomers and visons in the Z2 RVB liquid. In particular,
bare monomers and a monomer-monopole bound states have different statis-
tics. Therefore, as in the Z2 RVB case, the relative statistics of monomers is
determined by the energetics.

The U(1) RVB liquid phase is also called a Coulomb phase because it has
a continuum description that resembles the usual Maxwell action of the free
electromagnetic field. In fact, we will later see that the gapless excitation of
the U(1) RVB phase resembles a photon.

1.4.4 Deconfined critical points

On 2d bipartite lattices, it turns out that the RK point is not part of a liquid
phase but rather a critical point between a plaquette phase, which is discussed
in the next section, and a staggered phase. More precisely, the dimer corre-
lations decay algebraically and the order parameter of the plaquette phase
vanishes continuously. However, the staggered order appears at full strength
so the ground state energy would have a derivative discontinuity. Therefore,
the transition itself would be classified as first order. However, we will see
below that the transition can be made continuous by weakly perturbing the
model.

The plaquette and staggered phases break different symmetries so, accord-
ing to the Landau theory of phase transitions, a transition between them will
generically be first order. It was noted in Ref. [43] that the scale invariance

9That the degeneracy, in fact, does persist away from the RK point, where the
wave function is no longer known, was shown numerically in Ref. [35]

10This is not actually true at the RK point, which is a boundary point of the U(1)
RVB phase. As we will see later, the inverse square force is like a Coulomb interaction
transmitted by a photon whose speed (near the RK point) is c = 1 − (v/t). At the
RK point, the “speed of light” vanishes, and so does the force.
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(i.e. diverging correlation length) at the RK point was related to the existence
of an emergent height field, which will be discussed below, that supports de-
confined excitations. Critical points with this structure, now called deconfined

critical points, have since been proposed as a generic mechanism by which
such non-Landau transitions can occur in quantum systems [44–46].

1.4.5 Valence bond crystals

The most common class of phases found in QDMs are phases where the va-
lence bonds arrange in an ordered pattern. We have already seen the columnar
(Fig. 1.6a) and staggered (Fig. 1.6b) states. We now discuss some other crys-
talline phases which have been found.

Plaquette phase

The plaquette state is drawn schematically in Fig. 1.6c for a square lattice.
This picture should be interpreted in a mean-field sense, i.e. the thick lines
indicate bonds of the lattice where the probability of having a dimer is com-
paratively large and the thin lines are where this probability is comparatively
small. Imagine a pair of dimers on an elementary plaquette resonating between
the horizontal and vertical configurations. To zeroth order, a variational wave-
function for this state may be visualized as a product of such terms.

As the figure indicates, the square lattice plaquette state is symmetric un-
der rotation and translation by two lattice spacings in either direction. The
state is four-fold degenerate as there are four possible ways to choose this dou-
bled superlattice. Note that the plaquette state breaks different symmetries
than the columnar and staggered states.11

The plaquette state can be generalized to other lattices and higher di-
mensions but so far a plaquette phase has been observed only on 2d bipar-
tite lattices, particularly the square [32, 33, 47] and honeycomb [34] lattices,
where numerical evidence suggests that the onset of the plaquette phase be-
gins immediately to the left of the RK point and persists for some range of
parameters. On the honeycomb lattice, the current picture is that the pla-
quette phase gives way to the columnar phase via a first order transition
around v/t = −0.2 [34]. A similar scenario has been proposed for the square
lattice [47] but there has been a very recent suggestion that, on the square
lattice, a new “mixed” phase might occur between the plaquette and columnar
phases [48].

11For example, on the square lattice, the staggered and columnar phases break ro-
tational symmetry but both have higher translational symmetry than the plaquette
phase.
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More complex crystals

A familiar difficulty in the numerical analysis of quantum many body Hamil-
tonians is that with available techniques only fairly small system sizes may be
studied. Therefore, questions regarding thermodynamic limits are difficult to
answer definitively. In the case of QDMs, the problem is compounded by the
observation that crystalline phases with rather large unit cells have been dis-
covered even for QDMs on fairly simple lattices. Indeed, for the kagome quan-
tum dimer model, fantastically large unit cells have been proposed [49, 50].

As a concrete example, the triangular lattice QDM exhibits a phase called
the “

√
12 ×

√
12 phase”, named for its 12 site unit cell. The phase was first

conjectured due to an exact mapping between the QDM at v = 0 and the
fully frustrated transverse field Ising model on the honeycomb lattice. [52]
The most current numerical evidence suggests that on the triangular lattice,
the

√
12 ×

√
12 phase is the only phase between the columnar phase and the

Z2 RVB liquid phase discussed above. [35]

Even more complex crystals: Cantor deconfinement

Cantor deconfinement is a phenomenon predicted to occur for QDM’s on 2d
bipartite lattices when these models are perturbed near their RK points. In
the unperturbed QDM, the RK point is a critical point between a plaquette
crystal, which has zero winding number, and a staggered crystal, which has
the maximal winding number. It was noted in Refs. [53, 54] that for a wide
class of perturbations, this picture gets modified as new crystalline phases with
intermediate winding numbers appear between the plaquette and staggered
states. In particular, in the limit of an infinite system, the winding number
per unit length, which is called the tilt for reasons that will be made clear
later in this chapter, will increase continuously from zero to its maximal value
of one as we move from the plaquette phase to the staggered phase along a
generic path in the phase diagram.12

We remind the reader of two qualitatively different ways by which a func-
tion can continuously increase from zero to one as a parameter x is tuned from
xi to xf . There is the naive “analytic” way: place a pencil at (xi, 0) and trace
out a non-decreasing curve that ends at (xf , 1) without removing the pencil
from the paper. However, we can also construct a continuous function that
begins at (xi, 0), ends at (xf , 1), and has zero derivative everywhere except on

12To simplify the discussion, the reader may wish to consider a class of states
where Wx = 0 but Wy can vary. In this case, Figs. 1.6ac and b are states of minimal
and maximal winding |Wy| respectively. We invite the reader to construct examples
of states with intermediate winding or look at some of the pictures in Ref. [55].
Also, when we perturb the model, the phase diagram becomes multi-dimensional.
The reader should understand that when we speak of new phases appearing between
the plaquette and staggered states, we are referring to a quasi-1D slice of the actual
phase diagram.
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a generalized Cantor set, where the derivative does not exist. The resulting
function looks like a staircase but between any two steps there are an infinite
number of other steps, hence its name, devil’s staircase. This construction
is a standard exercise in analysis but, remarkably enough, is relevant in the
present context as we shall now see.

Returning to physics, we note that details of these new intermediate phases
will depend on specifics of the perturbation. For example, additional poten-
tial energy terms will favor states where the tilt is commensurate with the
lattice. A commensurate crystal has a unit cell which is finite-sized and a
tilt that is a rational number. However, quantum fluctuations, due to present
and additional kinetic energy terms, can stabilize states where the tilt is in-

commensurate with the lattice, i.e. where the tilt is an irrational number.13

Therefore, if the potential terms dominate, the system will prefer to “lock”
into commensurate values of the tilt. The variation of the tilt along a line in
the phase diagram connecting the plaquette and staggered states will resem-
ble the devil’s staircase discussed above. However, if quantum fluctuations are
dominant, then the tilt will vary along this line in the conventional “analytic”
fashion. Such a regime of parameter space, if it exists, would effectively be
an incommensurate phase because rational tilts would occur only for a set of
measure zero.

The central conclusion of Refs. [53, 54] was that such a fluctuation-
dominant regime will exist parametrically close to the RK point for a wide
class of perturbations. This would be bordered by a regime where the fluctu-
ations compete with the locking potentials, which would eventually dominate
away from the RK point.14 Moreover, it was observed that the commensurate
states were gapped with linearly confined monomers while the incommensu-
rate states were gapless with monomers that were confined only logarithmi-

cally, due to the effective two-dimensional Coulomb interaction. In this sense,
we can think of the incommensurate states as having monomers that are “al-
most” deconfined.

When the locking is strong, these “almost” deconfined points, i.e. the in-
commensurate states, occupy a small fraction of the phase diagram and in the
limit of infinitely strong locking will exist only on the Cantor-like set defin-
ing the boundaries of the steps of the devil’s staircase. However, when the
locking is weak, these “almost” deconfined points occupy a finite fraction of
the phase diagram and this fraction approaches unity as we approach the RK
point. Hence, very close to the RK point we almost have an “almost” decon-
fined phase! This last result is what is meant by “Cantor deconfinement”.

One reason why this result is noteworthy is because a famous result of
Polyakov [56] states that one cannot have an actual deconfined phase in a

13Of course, this would make sense only in the limit of an infinite system.
14The transition from an analytic variation of the tilt to the staircase-like variation

was called a “breaking of analyticity” in analogy to a similar mechanism in classical
soliton models first discussed by Aubry. [57]
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staggeredcolumnar plaquette???

v/t
RK

staggeredcolumnar Z2 RVB liquid???

v/t
RK

(a) (b)

staggeredcolumnar U1 RVB liquid???

v/t
RK

staggeredcolumnar Z2 RVB liquid???

v/t
RK

(c) (d)

Fig. 1.8. Generic phase diagrams. (a) 2d bipartite. For the honeycomb lattice,
“???” is a first order transition between the columnar and plaquette phases. (b) 2d
non-bipartite. For the triangular lattice, “???” includes the

√
12 ×

√
12 phase and

possibly others. (c) higher d bipartite. For the cubic lattice, “???” is not known.
(d) higher d non-bipartite. For the fcc lattice, the v/t → −∞ phase, normally the
columnar phase, is not characterised completely.

compact U(1) gauge theory in 2+1, of which the 2d bipartite QDM is an
example. In fact, this is another explanation for why the RK point is an
isolated point in these models instead of being part of a deconfined liquid
phase. The Cantor deconfinement scenario provides a way around this, the
fundamental property absent in the dimer models being Lorentz invariance.

The arguments summarized in this section are based on renormalization
group analyses of a continuum field theory, which will be discussed more below,
that is believed to describe 2d bipartite RK points. We encourage the reader
to consult the original papers [53, 54] for details and additional caveats.15

We would like to point that a microscopic demonstration, i.e. at the level of
explicit Hamiltonian that can be viewed as a perturbed RK point, of the weak
locking regime is currently lacking. However, we refer the interested reader to
Ref. [55] for an explicit “proof of principle” of the strong locking regime.

1.4.6 Summary of phase diagrams

The results of this section suggest the generic RK phase diagrams shown
in Fig. 1.8. However, richer phase diagrams may be obtained by considering
exotic lattices or, as we have seen, by perturbing away from the prototypical
RK Hamiltonian.

1.5 The Rokhsar-Kivelson point

In this section, we discuss a number of features of the RK point and elaborate
on some of the issues discussed previously.

15For example, for the square lattice QDM it turns out that a generic perturbation
will drive the transition first order, so that fine-tuning the Hamiltonian is required
in order to realize the Cantor deconfinement in that case.
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1.5.1 Ground-state wavefunction

To derive Eq. 1.6, it is easiest to consider the explicit example of the original
square lattice QDM given by Eq. 1.1. The sum is over all elementary plaquettes
in the lattice. The v operator acting on a dimer covering gives a potential
energy if the plaquette in question has two parallel dimers, i.e. if the plaquette
is flippable, and annihilates the state otherwise. The t operator is a kinetic
energy and flips the dimers if the plaquette is flippable and annihilates the
state otherwise. At the point v = t, the Hamiltonian is a simple sum of
projectors:

=   ∑(   〉-   〉)(〈    -〈    )     
QDM

H

(1.7)

i.e. a sum of terms each of which has eigenvalues 0 or 1. Therefore, any wave
function annihilated by this Hamiltonian will be a zero energy ground state.
We may write a general wave function as |Φ〉 =

∑

c Ac|c〉, where |c〉 is a dimer
covering of the lattice and the sum is over all coverings. The state |Φ〉 will be
annihilated if, and only if, the amplitude Ac of any dimer covering |c〉 is the
same as the amplitudes {Ac′} of all dimer coverings {|c′〉} that differ from
|c〉 by one flipped plaquette. Therefore, a prototypical ground state of Eq. 1.7
will have the form of an equal amplitude superposition, i.e. Eq. 1.6.

For the square lattice, the kinetic term is believed to be ergodic in each
topological sector. In this case, there is a unique ground state for each topolog-
ical sector given by the equal amplitude superposition of all dimer coverings
in that sector. Of course, because these are all degenerate, any linear com-
bination of them will also be a ground state including the equal amplitude
superposition of all dimer coverings.

The staggered state (Fig. 1.6b) will always be annihilated by Eq. 1.1 so
hence will also be a ground state at the RK point. Of course, the staggered
state wave function trivially has the form of Eq. 1.6, being the only occupant of
its dynamical sector, so this is consistent with the previous discussion. When
v > t, the RK Hamiltonian is positive semidefinite so the staggered states,
which will still be zero energy eigenstates, will still be ground states.

1.5.2 Fractionalisation and deconfinement

Fractionalisation and deconfinement are evident at the RK point. Imagine
declaring two fixed sites as hosting monomers rather than having dimers
emanating from them. Now, consider the Hamiltonian (1.7) with the two
monomers held fixed. The ground state will still have zero energy and the
wave function will still have the form in Eq. 1.6 where the dimers now res-
onate everywhere except on the sites having the monomers. As the ground
state energy is independent of the separation between the monomers, the
monomers are deconfined. Hence fractionalistion generically occurs at the RK
point, independently of the lattice. Whenever the RK point is a critical point
between two solid phases, the RK point is thence a deconfined critical point.
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1.5.3 Spatial correlations

The dimer-dimer correlation function 〈n̂σ(r)n̂σ(0)〉, where n̂σ(r) is a projec-
tion operator for having a dimer of orientation σ at site r, is an important
quantity. The form of the equal amplitude wave function, Eq.(1.6), has an im-
portant consequence for the correlations of operators, D̂, which are diagonal

in the dimer basis, 〈c|D̂|c′〉 = δc,c′〈c|D̂|c〉 ≡ Dc:

〈D̂〉 =
〈ΦGS |D̂|ΦGS〉
〈ΦGS |ΦGS〉

=

∑′〈c|D̂|c〉
∑′〈c|c〉

=

∑
′

Dc

Nc
. (1.8)

This expression is simply an ensemble average over the set of Nc dimer

coverings connected by the flip term (which are averaged over in the
∑

′

) –
this is exactly the corresponding correlation function of the relevant classical

dimer model at infinite temperature.16

The spatial correlations of the dimer density may be obtained by choosing
D̂ = nc

σ(r)nc
σ(0), where nc

σ(r) = 1(0) if a dimer of orientation σ is (is not)
present at site r in dimer covering |c〉. For calculating spatial correlations of
the analogous classical problem, efficient numerical and, in two dimensions,
analytical [24, 25] techniques are available.

This ‘dimensional reduction’ from a d + 1-dimensional (quantum) to a d-
dimensional (classical) problem is one of the reasons RK-type models have
been so popular. They enable the transpositions of relatively easily obtained
classical results into a more interesting quantum setting.

1.5.4 Excited states

Another property of the RK point is that information about the excited states
can be obtained by studying temporal correlations of the infinite temperature
classical system [58]. To see this, consider a classical ensemble of dimer cover-
ings that are connected to one another by application of the basic flip term in
Eq. 1.1. At equilibrium, each dimer covering occurs with the same probabil-
ity. In a classical Monte Carlo simulation, the dynamics of this equilibration
is governed by the master equation:

dpα

dt
= −

∑

α

Wαβpβ (1.9)

where pα is the probability of the system being in dimer configuration α,
and Wαβ is the rate of transition from state β to state α. We are interested
in the case where the basic Monte Carlo move involves randomly a select-
ing a plaquette and flipping it if possible. In this case, the matrix element

16However, as we shall see shortly, this does not imply that the RK point is
literally “connected” to the infinite temperature state in the sense of being part of
the same phase in the phase diagram.
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Wαβ between two different dimer coverings α and β equals -1 if α and β are
connected by a single plaquette flip and zero otherwise. The normalization
condition

∑

α pα = 1 implies that Wαα = −
∑

β 6=α Wαβ = nfl,α where nfl,α

is the number of flippable plaquettes in dimer covering α. The key observation
of Ref. [58] was that:

Wαβ = (HQDM )αβ (1.10)

i.e. the rate matrix of the classical Monte Carlo simulation is the same as
the Hamiltonian matrix (Eq. 1.1) of the quantum problem. Therefore, the
two matrices share the same eigenvalues and eigenvectors. In other words, the
relaxation modes of the master equation correspond exactly to the excited
states of the QDM at the RK point. As we will see later in this review, this
fact provides a route for constructing a continuum field theory of the RK
point when the lattice is bipartite.

Moreover, any temporal correlation function of the classical problem will
have the form:

∑

λ

cλe−λt (1.11)

where {λ} are the eigenvalues of matrix W (and hence of HQDM ) and are non-
negative for reasons discussed above. As noted in Ref. [58], the long time be-
havior of such correlation functions will be dominated by the smallest nonzero
eigenvalue so numerical simulations of appropriate classical time correlation
functions can give nontrivial information about the energy gap and low lying
spectrum at the RK point. Applications of this idea will be seen further below.

The mapping from a quantum problem in d+1 to a classical d dimensional
one is very general and can be run in reverse: given any local set of weights for
a problem in classical statistical mechanics, it becomes possible to construct a
quantum Hamiltonian with a special point analogous to the RK point. At this
point, the ground-state wave function can be expressed as a superposition of
the classical configurations where the probability amplitudes are exactly the
Boltzmann weights of the classical model. This process is known as Rokhsar-
Kivelsonisation [59–61].

1.5.5 A special liquid point or part of a liquid phase?

We have seen that the ground state manifold at the RK point includes wave
functions with no local order and fractionalized deconfined excitations. A nat-
ural question is whether the RK point is a special point or part of a fractional-
ized liquid phase. We have seen that the answer depends on the geometry and
dimensionality of the lattice. The present understanding is that for lattices in
three and higher dimensions, as well as for 2d nonbipartite lattices, the RK
point is generically part of a liquid phase. For 2d bipartite lattices, the RK
point is (generically) either a special critical point or the non-critical endpoint
of an ordered phase.
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This classification of lattices has not been established rigorously but ex-
trapolated from numerous specific examples. While the existence of some of
these liquid phases has been independently verified through numerics, it is
difficult to numerically distinguish a liquid from a crystal with a very large
unit cell, as discussed in the previous section. In fact, the strongest evidence
for the existence of these liquid phases is based on a careful analysis of the
RK point, which is what prompted their discovery in the first place. We now
review this line of reasoning.

The existence of the Z2 RVB liquid phase on the triangular lattice follows
from the observation that the classical dimer model at infinite temperature
has exactly the same correlations as the zero temperature quantum problem
at the RK point. Of course, we know the dimer-dimer correlations will match
for any lattice by construction. We also know that for a general lattice at
the RK point, monomers are deconfined with exactly zero correlation beyond
one lattice spacing. The key point about the triangular lattice is that the
classical (i.e. infinite temperature) monomer-monomer correlation function
decays exponentially with a characteristic length of around one lattice spacing
[62,63]. In other words, both the RK point and the infinite temperature state
are liquids with deconfined monomers that interact ultra-locally. The simplest
picture consistent with this is that the RK point is part of a zero temperature
liquid phase that connects smoothly to the infinite temperature phase as the
temperature is raised. Similar arguments apply for other non-bipartite lattices
in two and higher dimensions.

For bipartite lattices, this argument no longer works. Its failure stems
from the fact that for these lattices, the classical monomer-monomer corre-
lation decays as a power law. This means that in the infinite temperature
phase, monomers are logarithmically confined in 2d while in 3d, they are still
deconfined but now have a long range interaction. Therefore, the infinite tem-
perature liquid is qualitatively different than the liquid occuring at the RK
point so there is no obvious reason to suspect a smooth connection between
the two.

Nonetheless, there are other approaches which give insight into the struc-
ture of these bipartite RK points. In the next sections, we will discuss some
of these, the single mode approximation (SMA), which works for general lat-
tices, and the height representation, which works for bipartite lattices. In those
contexts, we will return to the question of why bipartite RK points in 2d are
critical points while in 3d, they are part of a U(1) RVB liquid phase.

1.6 Resonons, photons and pi0ns: excitations in the
single mode approximation

In the original RK paper, the authors also had a look at the excitations of the
dimer model. One approach they took was via the single-mode approximation
(SMA), in which one constructs a trial state with a momentum which differs
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from that of the ground state by q; the momentum being a good quantum
number in a translationally invariant system, the variational principle em-
ployed on the states at that momentum yields the basic result that the energy
of the trial state provides an upper bound on the excitation energy at that
momentum.

Therefore, as a matter of principle, one can use the SMA to prove gap-
lessness. In order to demonstrate the presence of a gap, a different method is
needed. [64]

Let us denote the ground state of the dimer model by |0〉, and let σx
τ̂ (r)

be the Pauli spin operator, its eigenvalues ±1 corresponding to the presence
or absence of a dimer on the link at location r. τ̂ encodes the direction the
dimer points in, i.e. its “polarisation”.

Fourier transforming the dimer density operator,

σ̃x
τ̂ (q) ≡

∑

r

σx
τ̂ (r) exp(iq · r) . (1.12)

enables us to define our trial state, which is orthogonal to |0〉 for q 6= 0:

|q, τ̂〉 ≡ σ̃x
τ̂ (q) |0〉 (1.13)

One next needs to check that one has, in fact, constructed a state rather
than just annihilated the ground state, i.e. that

〈q, τ̂ |q, τ̂ 〉 6= 0 . (1.14)

One then obtains a variational energy of

E(q, τ̂ ) ≤ 〈0| [σ̃x
τ̂ (−q), [HQDM , σ̃x

τ̂ (q)]] |0〉
〈0| σ̃x

τ̂ (−q)σ̃x
τ̂ (q) |0〉 ≡ f(q)

s(q)
, (1.15)

where f(q) is known as the oscillator strength, and s(q) as the structure factor.
Crucially, these can be evaluated as expectation values in the ground state,
whose correlations therefore encode information on the excitation spectrum.

The utility of the SMA derives in large part from the fact that there
are situations in which gaplessness is present generically. For instance, if the
density σ̃x

τ̂ (q0) is a conserved quantity, then [HQDM , σ̃x
τ̂ (q0)] = 0, whence

E(q0, τ̂ ) = 0. The behaviour of f(q) near q0 can then be used to determine
a bound on the dispersion of the soft excitations. Finally, a finite f(q) ac-
companied by a divergence of s(q) can be used to infer gapless excitations.
Indeed, such a “soft mode” is a classic signature of incipient order.

On the square lattice, RK identified the density of dimers pointing in
a given direction (τ̂ = x̂, say) at wavevector q0 = (qx, π) as a conserved
quantity. For the cubic lattice, the analogous density is simply that at q0 =
(qx, π, π). The way to see this is to observe that dimers are always created
and destroyed in pairs on opposite sides of a plaquette. This implies that the
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oscillator strength, f(q0), vanishes at q0; at wavevector q0 +k, the oscillator
strength is given by [41]

f(k) ∝ (k × τ̂)2 , (1.16)

This is true not just at the RK point, but for all values of −∞ < v/t ≤ 1.
Contrary to appearances, this does not imply a line of zero energy exci-

tations because along with the oscillator strength, the structure factor also
vanishes for all q0 with qx 6= π, i.e. Eq. 1.14 is not satisfied unless qx = π.
Indeed, at the RK point itself, for momentum q = (π, π[, π])+k, the structure
factor is given by a transverse projector:

sx̂(k) ∝
k2

y[+k2
z ]

k2
≡ k2

⊥
k2

. (1.17)

Consequently, only transverse excitations are generated [65] by σ̃x
τ̂ , a fact

that traces back to the defining constraint of the dimer model, which takes a
form like ∇ · B = 0 for bipartite lattices.

The soft excitations near q0 = (π, π[, π]) were called resonons by RK,
while in three dimensions, they are typically called photons [41, 42], as they
arise from a Maxwell theory in the standard way as discussed below. It is
important to note that the RK point is in fact untypical: the photons are
anomalously soft, with a disperson ω ∝ k2. This is remedied upon entering
the Coulomb phase to the left of the RK point, where the photons become
linearly dispersing.

These photons turn out to be the only gapless excitations for the cubic
lattice. In contrast, on the square lattice one also finds gapless excitations
of the ‘soft-mode’ type near (π, 0) and (0, π), where there is a divergence of,
respectively, sx̂ and sŷ. These soft excitations were called pi0ns [41] due to
their location in the square lattice reciprocal space. This divergence is a signa-
ture of an incipient crystalline phase having order at (π, 0) and confirms the
earlier assertion that the square lattice RK point is an isolated critical point.
In contrast, the absence of pi0ns at the cubic lattice RK point is consistent
with the RK point being part of an extended liquid phase.

It turns out that the trial wavefunctions used in the SMA do a much better
job at constructing resonons and photons than pi0ns. [66, 67] Indeed, if the
critical exponent of the correlations is such that the structure factor remains
infrared convergent, the SMA does not even show the presence of a soft mode.

Finally, for the RK points of the simple non-bipartite lattices (triangular
and face-centered cubic), the calculations presented above do not yield gapless
excitations, in keeping with the expectation that the relevant Z2 RVB liquids
are gapped. [41]

1.7 Dualities and gauge theories

Link variables, together with a constraint defined on sites, are defining features
of lattice gauge theories. There, the gauge fields live on links of a lattice, while
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Gauss’ laws define the physical sector of the theory, such as the familiar

∇ ·E = 0 (1.18)

from electrostatics. In the following paragraphs, we address the relationship
between QDMs and gauge theories.

This is most crisply done using the transverse-field Ising model (TFIM)
as an example. It will turn out that the quantum dimer model is the strong-
coupling dual partner of this simple spin model in d = 2 + 1. The Ising spins
Sz = ±1 live on the sites of a lattice Λ:

HTFIM = −
∑

〈ij〉
JijS

z
i Sz

j − Γ
∑

i

Sx
i . (1.19)

Here, Jij denotes the exchange constant of a given pair of spins, and Γ is the
strength of the transverse field.

The mapping (see Fig. 1.9) now proceeds by identifying the link variable
σx

ij on the dual lattice with the bond energy of the spin model:

−|Jij |σx
ij = JijS

z
i Sz

j , (1.20)

so that σx
ij = −1 for a frustrated bond.

The action of the transverse field is to flip a spin, i.e. to toggle between
Sz

i = ±1; this corresponds to exchanging the sign of the energy of the bonds
emanating from site i. These bonds form an elementary plaquette of the dual
lattice, 2, at the centre of which direct lattice site i is located. The dual lattice
Hamiltonian thus reads:

Hgauge = −
∑

−
|Jij |σx

ij − Γ
∑

2

∏

ij∈2

σz
ij , (1.21)

where the first sum runs over bonds and the second over plaquettes.
It would at first sight seem that Eq. 1.21 does not know whether the orig-

inal spin model was frustrated or not, as the signs of the exchange constants
have disappeared. Indeed, the information on exchange constants is stored in
a gauge invariant fashion in a Gauss’ law constraint on the physical sector of
the theory, i.e. for every site of the dual lattice, we have:

Ĝ|phys〉 ≡
∏

+

σx
ij |phys〉 = ±1|phys〉 . (1.22)

Here the product is over links emanating from a site of the dual lattice, which
corresponds to the links forming a plaquette of the direct lattice. If the pla-
quette is frustrated, i.e. the product of Jij around its bonds is negative, the
minus sign in Eq. 1.22 is chosen, otherwise the plus sign applies.
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i j

σij
x

Fig. 1.9. The dark lines denote the direct
lattice; the dashed lines the dual lattice; and
the dots are where the σ variables are lo-
cated. i and j are sites on the direct lattice.

1.7.1 Emergence of the QDM

In the limit Γ/J → 0, we have to minimise the number of frustrated bonds
subject to the constraint Eq. 1.22. For an unfrustrated model, this is done by
choosing σx ≡ 1 throughout – the system is free of dimers.

However, for a frustrated model, we have to have at least one frustrated
bond emanating from each site. Equating a frustrated bond with a dimer
present on it thus leads us to a hardcore dimer model: each site of the dual
lattice has one, and only one, dimer emanating from it in the limit Γ/J → 0.
Degenerate perturbation theory in the Γ term leads to the quantum dynamics
of the QDM. The RK-potential term in turn corresponds to an additional
multi-spin interaction.

At T = 0, the unfrustrated Ising magnet has an ordering transition at
(Γ/J)c. For a frustrated magnet, the critical (Γ/J)c may be suppressed; in
the most extreme case, there may be no ordered phase at all, so that only the
paramagnetic phase exists.

In dual language, this corresponds to a quantum liquid. In the particular
case of the triangular QDM, which can be obtained from a fully frustrated
TFIM on the honeycomb lattice by the above route, the appropriate quantum
liquid is the fractionalised RVB liquid.

What does the topological order of the RVB liquid mean in the spin model?
In fact, working backwards, one finds that the topological degeneracy indicates
that the ground-state energy is independent of the choice of [(anti-)periodic]
boundary conditions for the spin model: the topological sectors correspond to
having an even or odd number of frustrated bonds as one goes around the
system once. This makes sense as absence of long-range order in the param-
agnet implies insensitivity of the energy to the boundary conditions. Indeed,
in a perturbative expansion of the ground state energy around J = 0, one
will need to keep track of contributions involving a product of ∼ L terms,
corresponding to a loop winding around the system, in order to discover the
nature of the boundary conditions – this is a simple explanation for the ori-
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gin of the exp(−cL) splitting of the topological sectors in the topologically
ordered phase.

1.7.2 Continuum limit of the gauge theory

On the lattice, the constraint states that the (integer) number of dimers em-
anating from each site is always the same (namely, 1, for a hardcore dimer
model, but this number can be chosen freely as we have seen above). A con-
straint on a number leads naturally to a U(1) gauge theory. It is a constraint
on a parity, such as in the preceeding example (Eq. 1.22), that yields a Z2

gauge theory. Do all hardcore dimer models thus yield U(1) gauge theories in
the continuum?

In fact, some do (e.g. the cubic lattice) but others do not (i.e. the trian-
gular lattice). If we want to write down a U(1) Gauss’ law such as ∇ · B = 0
in the continuum, we need to interpret the dimers as fluxes. To do this, they
need to be oriented. This can straightforwardly be done on a bipartite lattice
– one chooses to orient them to point from one sublattice to the other. This
is clearly not possible on a non-bipartite lattice, as can most easliy be seen by
thinking of the triangular lattice as a square lattice with a diagonal linking
the bottom left to the top right of each plaquette. Dimers on this diagonal
cannot thus be oriented.

The presence of these diagonal bonds spoils the U(1) gauge symmetry in
the continuum limit, and breaks it down to Z2, as described e.g. in Ref. [68]. In
more elaborate schemes, other continuum gauge theories (e.g. Z3 [69]) become
possible, all from models which look very similar on the level of the constraint
on a single lattice site.

Indeed, a good deal of effort has been concentrated on building lattice
models realising other types of constraints, and thereby further types of con-
tinuum theories. For instance, Xu has written down a theory in which spin-2
excitations (‘gravitons’) occur in three dimensions, and other authors have
looked at a range of effective plaquette models. [70–73]

1.8 Height representation

For two-dimensional, bipartite lattices, the height representation provides one
route for constructing a continuum theory of the QDM. Consider, for example,
a square lattice which we divide into A and B sublattices. 17 The idea is to
construct a height field on the plaquettes of the lattice. Choose an arbitrary
plaquette to be assigned height zero. We then assign integer values to the
other plaquettes through the following rule: moving clockwise around a site of
the A sublattice, the height increases by one if a dimer is not crossed and the
height decreases by three if a dimer is crossed. The constraint of one dimer

17As usual, each A site is surrounded by four B sites and vice versa.
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per site ensures that the mapping is consistent and unique up to the choice
of the arbitrary height zero plaquette. 18

Fig. 1.10 shows some sample dimer coverings along with their respective
height representations. These pictures may be interpreted by considering each
plaquette as the base of a block which extends out of the page by an amount
given by the integer in the center of the plaquette. From this perspective, a
dimer covering may be viewed as a two-dimensional representation of the sur-
face of a three-dimensional crystal. A typical height profile will be fluctuating
on microscopic scales (Fig. 1.10a). However, if we coarse-grain this height field
by averaging over small but macroscopic regions, there will be regions of the
lattice such as in Fig. 1.10b where the (averaged) surface is essentially flat

and also regions such as in Fig. 1.10c where the (averaged) surface is tilted.
As these figures suggest, a dimer configuration can have an overall tilt. The
columnar state is an example of a flat configuration while the staggered state
is the state with maximal tilt.

The effect of flipping the dimers on a flippable plaquette is simply to
increase or decrease the height of that plaquette by 4. Therefore, the overall
tilt of a configuration will not be affected by any local rearrangement of the
dimers. One can verify that the overall tilt of a configuration is simply its
winding number per unit length.

So far, the height field is just a different way to represent a dimer covering.
The usefulness of this mapping is that it provides a route for constructing con-
tinuum field theories for RK points of (bipartite) QDMs. A purely deductive
argument, where the field theory is obtained by systematically coarse-graining
the microscopic Hamiltonian, is currently not available. The present intuitive
construction, due to Henley [58], is based on the relation between RK point
of the QDM and the relaxation modes of the master equation for the classical
problem discussed earlier in section 1.5.4.

The starting point is the nontrivial observation that the long distance
properties of the classical dimer problem can be captured by a continuum
theory of the sine-Gordon type [76]:

S[h] =
K

2

∫

d2r|∇h(r)|2 − λ

∫

d2r cos[2πh(r)] (1.23)

Here h(r) is a coarse-grained version of the height field so the theory implicitly
assumes a bipartite lattice. The origin of the second term can be traced back
to the fact that the microscopic height field can only take integer values. The
route is a bit involved but it is carefully described in [74] in the setting of
triangular Ising magnets, where the appropriate operator identifications are
also derived. K is determined by requiring that correlation functions computed
with this action have the same long distance behavior as the corresponding
correlations of the microscopic system.

18Of course, we are also free to uniformly shift all the plaquettes by the same
fixed amount.
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A 2d sine-Gordon theory, such as Eq. 1.23, shows a Kosterlitz-Thouless
phase transition between a rough phase, where λ renormalizes to zero, and a
smooth phase, where λ is RG relevant. [76] 19 It turns out that for the square
and honeycomb lattices, the value of K which reproduces the microscopic
dimer correlations corresponds to the rough phase so we will drop the cosine
term from now on. However, for some lattices, such as the diamond-octagon
lattice [75], the heights are flat, corresponding to a crystalline dimer solid.

Eq. 1.23 describes an equilibrium where states with small overall tilt are
favored and flat states are the most probable. This captures the microscopic
fact that the low winding number sectors contain more dimer coverings than
the high winding number sectors so, in the absence of interactions, will be
favored due to entropy. The strategy for constructing the quantum field theory
of the RK point is to first construct the continuum analog of Eq. 1.9. This will
give a continuum version of a rate matrix, which we then identify, by analogy
to Eq. 1.10, as the continuum version of the QDM Hamiltonian at the RK
point.

Recall that Eq. 1.9 determines how the probability pα of a classical dimer
system being in configuration α changes with time during a Monte Carlo
simulation where the only allowed dynamics is the plaquette flip and where
the equilibrium distribution is the one where each dimer covering occurs with
equal probability. How does this appear from a continuum standpoint? The
variation of the microscopic configuration with time will appear as a time
dependence in the height field h(r, t). The quantity corresponding to pα is then
P [h(r, t)], which is the probability distribution function of the field h(r, t).
The presence of the Monte Carlo dynamics will appear as random, sudden,
and ultra-local fluctuations of h(r, t). At equilibrium, P [h] = P0[h] will be
proportional to e−S[h], S[h] being given by Eq. 1.23.

Of course, this picture is qualitative. In order to proceed with the deriva-
tion, we need to determine the correct way to generalize the field h(r), which
we were discussing above, to incorporate dynamics. As a guiding principle,
we note that for conventional critical points described by a Landau-Ginzburg
type theory of a local order parameter the way to do this is to model the
dynamics via a Langevin type equation [76]:

dh(r)

dt
= − δS[h]

δh(r)
+ ζ(r, t) (1.24)

where the first term is a generalized damping force that drives P [h] to its
equilibrium distribution and ζ(r, t) is a random noise source, with zero mean
and uncorrelated in space and time. A more detailed discussion of the phe-
nomenology behind Eq. 1.24 may be found in an introductory text such as
Ref. [76].

19In the language of the 2D Coulomb gas, the rough phase is where opposite
charges exist as bound pairs while the smooth phase corresponds to a plasma.
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We remind the reader that the RK point is a very unconventional criti-
cal point and h(r) is not a local order parameter so this procedure is some-
what non-rigorous. Forging ahead, we note that if a field h obeys a Langevin
equation, then its probability distribution function P [h] will obey a Fokker-
Planck equation.20. For technical reasons discussed in Ref. [58], it is conve-
nient to write the equation in momentum space and in terms of the variable
Ψ [h] = P [h]/(P0[h])1/2:

dΨ [h]

dt
= −WhΨ [h] = −

[

∑

q

(− d

dĥq

+
1

2
K|q|2ĥ−q)(

d

dĥ−q

+
1

2
K|q|2ĥq)

]

Ψ [h]

(1.25)
Identifying Wh with HRK (see Eq. 1.10) and changing to spatial coordi-

nates, we obtain:

HRK =

∫

d2r
[1

2
Π2 +

K2

2
(∇2h)2

]

(1.26)

where we have rescaled the field h → h√
2
; dropped an (infinite) additive con-

stant term; and identified Π = i d
dh(r) as the momentum conjugate to h(r). In

order to write this as an action, we note that Π = ∂th so that:

SRK [h] =

∫

d2r
[1

2
(∂th)2 +

K2

2
(∇2h)2

]

(1.27)

Eq. 1.27 is the continuum theory of the RK point. As the theory is Gaussian,
the correlations are critical and K can be chosen so the theory reproduces
the microscopic correlations, which will depend on the (bipartite) lattice in
question. For example, on the square lattice, K = π

18 while on the honeycomb
lattice K = π

32 . Another feature of Eq. 1.27 is that there is no penalty if the
state has an overall tilt, i.e. if ∇h = C0 + C1(r, t) where

∫

d2rC1(r, t) = 0.
This corresponds to the extensive winding number degeneracy of bipartite RK
points.

A third feature of RK points captured by this action is monomer decon-
finement. A monomer is a site without a dimer and in terms of the height
mapping, is a site about which the height field increases (or decreases) by a
multiple of 4 (for a square lattice) upon a clockwise traverse. In the continuum
theory, monomers may be viewed as vortices of the height field. More formally,
if σ(r) is the density of vortices, then for any closed curve C enclosing an area
A, we have the relation:

∮

C

∇h · dr = 4

∫

A

d2rσ(r) (1.28)

which in differential form, translates to ∇2h = 4σ(r). This is a 2d Poisson
equation which may be solved to give: h(r) = 4

∫

d2r′σ(r′) ln |r − r′|. If the

20Again, we recommend Ref. [76] if this material is not familiar.
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action were a conventional Gaussian model, such as Eq. 1.23, then this fact
would imply that S[h] ∼

∫

(∇h)2 ∼
∫ ∫

d2rd2r′σ(r)σ(r′) ln |r− r′|, i.e. the
usual logarithmic interaction between vortices. In contrast, the RK action of
Eq. 1.27 implies:

S[h] ∼
∫

(∇2h)2 ∼
∫ ∫

d2rd2r′σ(r)σ(r′)δ(r − r′) (1.29)

which means that at the RK point, vortices, i.e. monomers, are deconfined as
required.

The RK point is a critical point separating valence bond crystals living in
different topological sectors. This fact motivates the following modification of
Eq. 1.27 to describe the system near the RK point:

SRK [h] =

∫

d2rdt
[1

2
(∂th)2+

ρ2

2
(∇h)2 +

ρ4

2
(∇2h)2+λ cos(2πh)+ . . .

]

(1.30)

where ρ4 = K2 and we have explicitly written the cosine term which enforces
the discreteness of heights. Here ρ2 = 1 − (v/t) controls the phase transition.
If v/t = 1, we recover the RK action (1.27) while if v/t 6= 1, the ρ4 term is
higher order so, at the crudest level, may be ignored. If v/t > 1, this action
favors a state of maximal tilt, namely the staggered state. If v/t < 1, the
action prefers a state of minimal tilt as required but there is an additional
subtlety which we will return to in a moment.

A nice feature of this construction is that it can be generalized to higher
dimensions. To see this, we first view the microscopic problem from yet an-
other perspective. [77] Divide the bipartite lattice into A and B sublattices in
the usual way, i.e. each link has one A site and one B site. A dimer covering
of the lattice can be interpreted as a lattice magnetic field in the following
way. The links containing dimers are vectors with magnitude z − 1 that point
from the A to the B sublattice, where z is the coordination of the lattice. The
links without dimers are vectors with unit magnitude that point from the B
to the A sublattice.

In this way, the hard core dimer constraint is exactly the condition ∇ ·B =
0 as discussed in the previous section. This constraint can be solved by writing
B as the (lattice) curl of a potential. In 2d, B = ∇× h21 where h is a scalar
field: it is precisely the height field we have been working with so far! In higher
dimensions, B = ∇× A where A is a vector potential defined on the links of
the dual lattice.

21To make sense of the curl of a scalar, you can think of it as a vector pointing in
the ẑ direction, yielding a B in the 2d XY plane. As B has two components and there
is one constraint, ∇ · B = 0, a one-component (scalar) field is sufficient to encode
all the information. In 3d, one needs two degrees of freedom, which are encoded by
the vector potential A (3 components) minus a local gauge transformation.
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We learned that the 2d winding numbers corresponded to the overall tilts
of the height field. In this magnetic analogy, the winding numbers correspond
to the magnetic flux through a line or surface.22

Eq. 1.23 describes a situation where small tilts are favored. By analogy [41,
42,78], we may conjecture that the classical dimer problem in three dimensions
should be described by a continuum action that favors small magnetic flux:

SC =
K

2

∫

d3r(∇× A)2 (1.31)

Using the same procedure as we did to derive Eq. 1.30, we can obtain the
following action:

S =

∫

d3xdt
[

(∂tA)2 + ρ2(∇× A)2 − ρ4(∇×∇× A)2
]

(1.32)

=

∫

d3xdt
[

(E)2 + ρ2(B)2 − ρ4(∇× B)2
]

(1.33)

where we have used the gauge∇ · A = 0 and ρ2 = 1−v/t. Here E = ∂tA−∇A0

and B = ∇× A. In going from Eq. 1.32 to 1.33, it is not literally an equality
as the field A0 has been included to obtain the most general expression.

The reader is invited to verify that Eq.1.33 captures the salient features of
a bipartite RK point including the extensive degeneracy and deconfinement.
Eq. 1.33 is precisely the action of quantum electrodynamics except that B is
restricted in the range of values it can take. For this reason, Eq. 1.33 is referred
to as a theory of compact QED in 3+1 dimensions and similarly Eq. 1.30 may
be viewed as a compact QED in 2+1.

We now return to the issues raised in our preliminary discussion of bipartite
RK points. Once again, if v/t 6= 1, we may ignore ρ4 in Eq. 1.33. When v/t < 1,
Eq. 1.33 becomes exactly the Maxwell action with a photon described by the
dispersion ω = (1 − v/t)k. This is the origin of the 1/r interaction between
monomers in the U(1) RVB phase. The force is carried by a “photon” whose
speed vanishes at the RK point. Thus, at the RK point, the force itself vanishes
and the dispersion becomes quadratic. In contrast, in two dimensions, when
v/t < 1, the λ term in Eq. 1.30 becomes relevant. Therefore, when v/t < 1, the
system is not described by a Gaussian theory but is driven into a crystalline
phase. Therefore, unlike in 2d, in three dimensions, the RK is the endpoint of
a liquid phase.

Finally, just as a monomer can be understood as a local violation of the
∇ ·B = 0 constraint, in the 3d case, we can also consider violations of ∇ ·E =
0. These excitations are called electric monopoles and are analogous to visons
in the Z2 RVB case. Just like visons, these excitations involve only dimers.

22Draw a line, or surface, passing through the links of the direct lattice. The
magnetic flux is defined as the net magnetic field through the surface, i.e. the sum
of the fields on the pierced links.
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Fig. 1.10. Examples of height mappings. In each case, the upper left plaquette is
chosen to have height zero.

1.9 Numerical methods

In common with other models of quantum matter, quantum dimer models are
in principle amenable to study by perhaps the most general method, namely
exact diagonalisation of finite-size systems, a method described in the contri-
bution by Laeuchli in this volume.

An asset in the present context is the somewhat slower – yet still expo-
nential – growth of the Hilbert space with system size. One can think of this
roughly as follows: whereas a system of spins S = 1/2 has a Hilbert space
of dimension 2N , the imposition of a local constraint effectively reduces that
dimensionality. Therefore, whereas the current upper limit on the size of spin
systems hovers around 40 sites, for constrained models such as the quantum
six-vertex model [79, 80], significantly larger systems can be studied.

A further very significant help is the existence of the RK point, at which
the properties of the ground state wavefunction can be studied by resorting
to classical methods, in particular standard Monte Carlo simulations where
analytical treatments are not available. These enable the study of systems
very large compared to those accessible to quantum Monte Carlo studies. In
particular, this allows the study of higher-dimensional models: for instance,
the RK point of the cubic lattice QDM has been studied for a system with
over 32000 sites. [40, 41]

Given the RK-QDMs are in general constructed not to exhibit a sign prob-
lem, they are also in principle amenable to efficient numerical study using
quantum Monte Carlo (rather than exact diagonalisation) methods away from
the RK point. In some cases, obtaining information on ground-state properties
can be surprisingly straightforward: for instance, for the hexagonal QDM, a
duality mapping onto the triangular Ising model permits a very simple quan-
tum Monte Carlo study.
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More generally, however, the constrained nature of the degrees of freedom
can be hard to deal with in the numerics. The problem arises as follows. When
sampling the partition function stochastically,

Z = Tr exp(−βH) (1.34)

the presence of the Trace requires the imposition of periodic boundary condi-
tions in imaginary time on the degrees of freedom in a Monte Carlo simula-
tions.

If the quantum dynamics involves flipping single spins, such as in a trans-
verse field Ising model, this translates into the simple and maximally local
constraint that each spin be flipped an even number of times. This constraint
is naturally observed, e.g., by an algorithm flipping clusters of spins in the
imaginary time direction.

However, for plaquette moves as typically arise in QDMs, this is not usually
possible – demanding that each plaquette flip an even number of times is more
restrictive than just imposing periodic boundary conditions on the microscopic
degrees of freedom.

One recent piece of progress has been the realisation that diffusion Monte
Carlo (also known as Green function Monte Carlo) can be used to resolve this
issue. [81] A description of this is beyond the scope of the current article, and
we refer the reader to the relevant articles in the literature. [82]

1.10 Dimer phases in SU(2) invariant models

In this section, we show how QDMs can arise from local, SU(2)-invariant
spin Hamiltonians where the physics is dominated by nearest-neighbor valence
bonds. The resulting dimer phases may then be interpreted as valence bond
crystals and liquids. The derivation involves two steps. The first is to provide
a mechanism that justifies the truncation of the full Hilbert space to the much
smaller nearest-neighbor valence bond manifold. The second step is to show
how the Hamiltonian in Eq. 1.1 can arise as the effective description of a spin
Hamiltonian in this truncated Hilbert space. We consider the second step first.

The transcription of QDM results into spin language is not an entirely
trivial matter because of two essential differences between dimers and the
singlets they represent. The first point is that while a dimer connecting sites
1 and 2 has no orientation, specifying a singlet bond between the spins re-
quires a choice of sign: ± 1√

2
(1↑2↓ − 1↓2↑). The second point is that while

dimer coverings of the lattice were taken as orthonormal basis vectors by con-

struction, any two nearest-neighbor valence bond coverings will always have
nonzero overlap. In fact, whether the collection of nearest-neighbor valence
bond states is linearly independent depends on the lattice geometry. The cur-
rent understanding is that nearest-neighbor valence bond coverings of the
square, honeycomb, triangular, and kagome lattices are linearly independent
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for sufficiently large lattices. 23 However, linear independence will break down
for highly interconnected lattices.24

The non-orthogonality of two valence bond coverings is most conveniently
discussed in terms of their transition graph. As shown in Fig. 1.11, this con-
struction involves overlaying two valence bond coverings |a〉 and |b〉 and elimi-
nating the shared bonds. The resulting figure contains closed loops of varying
even lengths. It can be shown that the magnitude of the overlap matrix ele-
ment Sab = 〈a|b〉 is given by |Sab| = 2NlxLl where Nl is the number of loops,
Ll is the sum of the lengths of the loops, and x = 1√

2
. 25 For a large lattice, a

typical transition graph will involve many long loops so the overlap between
arbitrary states, though never zero, will usually be very small.

1.10.1 Overlap expansion

The overlap expansion is motivated by this latter observation that the states
are “almost orthogonal”. The idea is to treat the overlap factor x, which is
actually 1√

2
, as if it were a small expansion parameter. For the square lattice,

we may choose a sign convention for singlets so that the overlap between any
two states differing by only a single (minimal) loop of length 4 is always −2x4.
In terms of the overlap expansion, the overlap matrix for a square lattice may
then be written as:

Sab = δab − 2x4
2ab + O(x6) (1.35)

where 2ab is unity if the states |a〉 and |b〉 differ by a single (minimal) loop of
length 4 and zero otherwise.

Now consider the following spin Hamiltonian:

δH = J
∑

〈ij〉
si · sj + v

∑

2

(

(s1 · s2)(s3 · s4) + (s1 · s3)(s2 · s4)
)

(1.36)

where the first sum is over nearest neighbors and the second sum over all
square plaquettes. We would like to write this as an effective operator that
acts on the nearest-neighbor valence bond manifold. The first step is to form

an orthogonal basis: |α〉 =
∑

i S
−1/2
αi |i〉. In terms of the overlap expansion,

(S−1/2)ab = δab + x4
2ab + O(x6) so the state |α〉 can be labelled in terms of

its order unity component. In terms of the basis {|α〉}, Eq. 1.36 is:

23However, rigorous proofs currently exist only for finite-sized square and honey-
comb lattices with open boundary conditions.

24For example, consider four spins on the corners of a square plaquette with two
additional links connecting opposite corners. This lattice has two linearly indepen-
dent nearest-neighbor valence bond states but three dimer coverings.

25The sign of Sab depends on the sign convention for labeling singlets discussed
earlier.
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Hαβ = (S−1/2δHS−1/2)αβ =
∑

ij

(S−1/2)αi〈i|δH |j〉(S−1/2)jβ

= −t2αβ + vnfl,αδαβ + O(vx4 + tx2)

(1.37)

where t = Jx4 and nfl,α is the number of flippable plaquettes contained in
(the order unity component of) state |α〉. Eq.(1.37) is just the RK-QDM!

Of course, these are formal manipulations and in reality, x = 1√
2

so the

error terms are not small compared to the leading terms. As discussed in
Ref. [83], the exponent of the error term vx4 comes from the length of the
minimal loop, which for the square lattice has length 4, while the exponent
of the error term tx2 comes from the difference in lengths of the minimal and
next minimal loops, which for the square lattice gives 6 − 4 = 2. Therefore,
one may expect the overlap expansion to work comparatively well for lattice
architectures that give larger values for these exponents.

1.10.2 Decoration

The most straightforward way to fix this problem is to modify the problem by
considering a decorated square lattice where an even number N of sites have
been added to each link (Fig. 1.12). [83] Eq. 1.36 is also slightly modified:

δH = J
∑

〈ij〉
si · sj + v

∑

2

(

(s1 · sb1)(s2 · sb2) + (s1 · sa1
)(s3 · sa3

)
)

(1.38)

where the labels refer to Fig. 1.12. The dimer coverings of the decorated lattice
correspond exactly to those of the undecorated lattice where an occupied
(empty) link in the latter case corresponds to a chain of dimers where the
endpoints are (are not) included. Therefore, the overlap expansion will give
the same effective dimer model at leading order.26 However, by decorating the
lattice the length of a minimal loop has increased from 4 to 4(N + 1) so the
error term is reduced from O(x2) to O(x2N+1).

Therefore, by decorating sufficiently, the QDMs can be realized to arbi-
trary accuracy and the procedure can be adapted to any lattice and also
higher dimensions. While fine-tuned features, such as critical points, will only
be captured in the limit of infinite decoration, a finite decoration should be
sufficient to realize the gapped phases, including the RVB liquid of the trian-
gular lattice.27

26In decorated case, t is now related to J in Eq. 1.38 by t = Jx4(N+1).
27We direct the interested reader to Ref. [84], where a different but complementary

approach was used to construct SU(2) invariant analogs of the square and honeycomb
lattice RK points. We point out that the procedure of Ref. [84] should work for any
lattice where a Klein model is known to exist, which includes the decorated lattices
just discussed.
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1.10.3 Large-N

An alternative way of suppressing the overlap between dimer states is to
endow each dimer with an additional internal flavour variable, which can take
on integer values between 1 and N . This can be achieved by following a line
of investigation which was initiated by Arovas and Auerbach with their study
of Schwinger Boson mean-field theory [85], which was then formalised in a
series of papers by Read and Sachdev, where the small parameter justifying a
mean-field treatment was provided by the inverse of the number of flavours,
1/N , see e.g. [86].

This route provides a simple quantum dimer model with only a kinetic
term at leading order in 1/N . An analysis of this model for the pyrochlore
lattice has found only a partially ordered dimer crystal [87], the final ordering
pattern of which at higher order is at present not known, although a large-unit
cell solid is a plausible outcome [88].

1.10.4 Klein models: SU(2) invariant spin liquids

Having discussed how Eq. 1.1 can arise as an effective model in the nearest-
neighbor valence bond subspace, we return to the more fundamental question
of how such an effective subspace can arise in an SU(2)-invariant, local, spin
model. The following construction, originally due to Klein, is one such route
[83,84,89–92]. For an arbitrary lattice Λ, consider the following Hamiltonian:

H0 =
∑

i∈Λ

αiĥi (1.39)

where αi is a positive constant that may, in principle, vary with i. ĥi is an
operator that projects the cluster formed by spin i and its nearest-neighbors
onto its highest spin sector. For example, on the square lattice, ĥi projects
the five spin cluster of site i and its four neighbors onto the S = 5/2 state. On
the decorated square lattice (Fig. 1.12), Eq. 1.39 includes S = 3/2 projectors
for each link site and S = 5/2 projectors for each corner site. The SU(2)-

invariance of the ĥ operators may be seen by writing them out explicitly.
For example, referring to the figure, ĥ1 = [S2 − (1

2 )(3
2 )][S2 − (3

2 )(5
2 )] where

S = S1 + Sa1 + Sb1 + Sc1 + Sd1 and so on.
Being a sum of projection operators, Eq. 1.39 only has non-negative eigen-

values. If spin i is in a singlet with one of its neighbors, then the cluster of
spin i and its neighbors has zero projection in its highest spin sector. Hence
ĥi will annihilate such a state any nearest-neighbor valence bond covering of
the lattice will be a zero energy ground state of Eq. 1.39. Depending on the
lattice, Eq. 1.39 may also have ground states outside of the nearest-neighbor
valence bond manifold. 28 Another issue is whether there is a spin gap separat-

28For a finite size honeycomb lattice with open boundary conditions, there is a
rigorous proof that the nearest-neighbor valence bond manifold spans the ground
state space [90].
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(a) (b) (c)

Fig. 1.11. The transition graph (c) of valence bond coverings (a) and (b). In this
example, the magnitude of the overlap between the two states is |Sab| = 23x38 = 1

216 .

ing the nearest-neighbor valence bond manifold from magnetic states. These
issues are not trivial to answer [93] but for a sufficiently decorated lattice, we
may appeal to the well known [94] result that a Majumdar-Ghosh chain has
a two-fold degenerate, spin-gapped ground state. The size of the spin gap in
the case is determined by the smallest of the αi.

The Hamiltonians made up of perturbed Klein models can thus be used
to obtain – in a controlled way – SU(2) invariant gapped spin liquids, the
existence of which had been in doubt for many years.

1 2

3 4

a1

b1

a2

b2

a3 a4

b4b3

c1

d1

e

Fig. 1.12. Decorated square lattice for the case N = 4.

1.11 Outlook

The field of quantum dimer models is now so rich that it has become impossible
to give a comprehensive and comprehensible summary even in an extended set
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of notes such as this one. In closing, we would like to provide a few pointers
to interesting developments not covered so far.

1.11.1 Hopping Fermions . . .

As mentioned above, the natural quantum dynamics chosen involves the small-
est clusters compatible with the local constraints. However, if one thinks of
a dimer as representing a Fermionic particle, there is a simple selection rule:
plaquette moves involving an even number of Fermions (with identical internal
quantum numbers) have zero matrix elements because they can be achieved
by the Fermions hopping clockwise or counterclockwise. These two differ by
an overall sign as one results in a final state which is an odd permutation of
the other. [95]

The natural quantum dynamics thus involves three Fermions (one being
excluded by the local constraint). Interestingly, the matrix elements can some-
times still be chosen to avoid a sign problem, [96] so that the generic features
of the resulting models are rather like those of the bosonic ones.

Additional structure appears, however, when the Fermions exhibit in ad-
dition a non-trivial internal degree of freedom, such as spin: for Fermions of
opposite spin, the abovementioned cancellation does not take place, and one
thus obtains a spin-dependent quantum dynamics (not entirely unlike Ander-
son superexchange). [97] Detailed phase diagrams of this class of models are
still being worked out at present.

1.11.2 . . . and much more

Dimer models with dynamical defects (such as holons and spinons) have e.g.
been studied in Refs. [98, 99]. Supersymmetric examples of quantum dimer
models have been proposed in Ref. [100]. Dimer-type models with non-Abelian
properties are also attracting a great of interest at the moment, such as in
loop models [26] or in the ‘Golden Chain’ [101], which amusingly enough
is related [102] to a simple two-leg dimer ladder [20]. An intriguing dimer
model with a huge ground-state degeneracy has been uncovered in Ref. [103].
Finally, there is a burgeoning literature on ‘non-Landau’ phase transitions, or
to be more precise phase transitions out of the new liquid phases discussed
above [104–107]: there is still much to look forward to in this field.
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