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1
Introduction

Classifying and understanding different phases of matter is an important task of
condensed matter physics. The class of “conventional” symmetry broken phases is
well understood in terms of Landau’s theory [1]. A paradigmatic example is the Z,
symmetric Ising model with a symmetric (paramagnetic) and a symmetry broken (fer-
romagnet) phase. The two phases can be distinct by measuring the magnetization as a
local order parameter. In contrast, topological phases of matter [2] are less understood
and no complete classification is known so far. In these notes we are interested in find-
ing schemes that allow us to understand and characterize certain topological phases
of matter. Throughout, we consider systems that are described by local Hamiltonians
(i.e., H="73", h, with h, acting on sites near n).

Gapped quantum phases of matter (i.e., phases in which the ground state is sep-
arated from the excitation continuum by a finite energy gap) can be very generally
defined in terms of local unitary (LU) transformations [3,4]. These LU transformation
correspond to applying a finite number of unitary operators that only act locally on
the wave function. We say that two gapped ground states are in the same phase if
and only if they can be transformed into each other by LU transformations. Alterna-
tively, we can use the definition that two ground states are in the same phase if they
are connected adiabatically to each other by a continuous parameter in the Hamil-
tonian. Using this definition, all states that differ from “trivial” product states only
by local fluctuations, i.e., short ranged entanglement (SRE) states, are in the same
phase. States that contain non-local quantum correlation, so-called topologically or-
dered states like quantum Hall states or gapped spin liquids, exhibit long-range (LRE)
entanglement that cannot be removed by LU transformations. Using this definition,
there exists one trivial (SRE) phase and various different topologically ordered phases
that differ in terms of their LRE from each other. In one-dimensional (1D) bosonic
systems all gapped ground states have only SRE [4].

Once symmetries are imposed, a much richer variety of phases emerges. In terms of
the LU transformations this means that when respecting the imposed symmetry, not
all SRE states are in the same phase. One class of states falling into this category are
the symmetry breaking states discussed above (e.g., the Ising ferromagnet). Another
recently discovered class are symmetry-protected topological (SPT) phases [5-10]. The
defining property of SPT phases is that they do not break a particular symmetry,
however, given a certain symmetry constrains, they cannot be adiabatically connected
to a trivial product state. Examples of SPT phases include topological insulators [11]
which can be protected by time reversal symmetry. For free fermions, SPT phases are
classified in the periodic table for topological insulators and superconductors [12,13].
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Another example is the Haldane phase [14,15] in 1D, which is protected by either time
reversal, bond-centered inversion, or the dihedral group of the spin rotations [6].

The main focus of these lecture notes lies on SPT phases in 1D bosonic systems.
Based on the entanglement properties of 1D systems, we motivate the matrix-product
state (MPS) representation of ground states. Using the MPS framework, we will then
demonstrate how SPT phases can be classified using projective representations of the
symmetries. As a concrete example, we will consider a spin-1 chain described by the

Hamiltonian L
H=7JY 8;-Sip1+D> (S (1.1)
j j

The first term is the standard spin-1 Heisenberg model with antiferromagnetic ex-
change interactions. The spin-1 Heisenberg model has a gapped ground state that
does not break any symmetries [14,16] (i.e., it is in the Haldane phase). The second
term represents a uniaxial single-ion anisotropy. As the parameter D > 0 is tuned, the
system undergoes a phase transition between two gapped phases at D ~ 1 [17-19].
In both phases the ground state has the full symmetry of the Hamiltonian! Thus the
phase transition cannot be understood in terms of spontaneous symmetry breaking.
With the framework developed in these lectures notes, we will be able to distinguish
the two phases in terms of a topological invariant and identify the Haldane phase as
an SPT phase. Furthermore, we will discuss non-local order parameters that will allow
us two detect the two symmetric phases in numerical simulations.

These notes are structures as follows: In Chapter 2 we start by deriving some basic
concepts of entanglement including its definition and the area law. We then introduce
matrix-product states (MPS) and show that these describe efficiently gapped ground
states in 1D. Based on symmetry transformations of MPS we introduce in Chapter
3 the concept of SPT phases. Using an intuitive approach by studying the symmetry
transformations of a segment of consecutive site, we demonstrate the stability of SPT
phases. In chapter 4 we propose non-local order parameters to detect SPT phases in
numerical simulations. We conclude the lecture by summarizing the main result and
give a short outlook in Chapter 5.
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Entanglement and Matrix Product
States

Entanglement is one of the fundamental phenomena in quantum mechanics and
implies that different degrees of freedom of a quantum system cannot be described in-
dependently. Over the past decades it was realized that the entanglement in quantum
many-body system can give access to a lot of useful information about quantum states.
First, entanglement related quantities provide powerful tools to extract universal prop-
erties of quantum states. For example, scaling properties of the entanglement entropy
help to characterize critical systems [20-23], and entanglement is the basis for the
classification of topological orders [24,25]. Second, the understanding of entanglement
helped to develop new numerical methods to efficiently simulate quantum many-body
systems [26,27]. In the following, we give a short introduction to entanglement in 1D
systems and then focus on the MPS representation.

2.1 Schmidt decomposition and entanglement

Let us consider the bipartition of the Hilbert space H = H; ® Hgi of a 1D system as
illustrated in Fig. 2.1(a), where Hy, (Hgr) describes all the states defined on the left
(right) of a given bond. In the so called Schmidt decomposition, a state |¥) € H is
decomposed as

|\I’>:2Aa|a>L®|a)R, o) () € Hi(r)s (2.1)

where the states {|a)r(p)} form an orthogonal basis of Hy (Hg) and A, > 0. The
Schmidt decomposition is unique up to degeneracies and for a normalized state |¥)
we find that > A2 = 1.

An important aspect is that the Schmidt decomposition gives direct insight into the
bipartite entanglement (i.e., the entanglement between degrees of freedom in Hj, and
Hp ) of a state. In particular, only one term contributes to the Schmidt decomposition
if and only if L and R are not entangled. If more than one term is required in the
Schmidt decomposition to express the state, the state is necessarily entangled. The
relation between the Schmidt decomposition and the entanglement can be made more
concrete. The reduced density matriz

pf = Trr ([9)(¥) (2.2)

has the Schmidt states |a) g as eigenstates and the Schmidt coefficients are the square
roots of the corresponding eigenvalues, i.e., pf* = 3 A?|a)g(a|r (equivalently for



4 Entanglement and Matrix Product States

(@) (b)
L . R

000000000000 00C00TODDVOOO0
[ N i

(©) (d) 100 : : :
I.IIIIIIIIIIIIIIIIIII
Many body Hilbert space 105] ® 1
[ ]
[}
~e 1010 | .. i
Area law states ®e .
% 10'15 | & © ‘1/)0> ... i
[ ]
L ‘¢random> ....
-20 ) . . %o

10 0 5 10 15 20

(07

Fig. 2.1 (a): Bipartition of a 1D system into two half chains. (b): Significant quantum
fluctuations in gapped ground states occur only on short length scales. (c): 1D area law
states make up a very small fraction of the many-body Hilbert space but contain all gapped
ground states. (d): Comparison of the entanglement spectrum of the ground state of the
transverse field Ising model (g = 1.5) and a random state for a system consisting of N = 16
spins.

p¥). The reduced density matrix of an entangled (pure) quantum state is the density
matrix of a mixed state defined on the subsystem. Thus the entanglement entropy,
which is defined as the von-Neumann entropy of the reduced density matrix, measures
the amount of entanglement. In terms of the Schmidt values, it is given by

S=-) AllogAl. (2.3)

The entanglement entropy S is a very useful measure to quantify the amount of en-
tanglement in a system for a given bipartition. Finally, the entanglement spectrum
{en} [28] is defined in terms of the spectrum {A2} of the reduced density matrix by
A2 = exp(—e¢,) for each a.

2.2 Area Law

A “typical” state in the Hilbert space shows a wolume law, i.e., the entanglement
entropy grows proportionally with the volume of the partitions. In particular, it has
been shown in Ref. [29] that a randomly drawn state |¢random) from the Hilbert space
of a system of N sites with on-site Hilbert space dimension d has an entanglement
entropy of S =~ N/2logd — 1/2 for a bipartition into two parts of N/2 sites.
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Ground states |¢)g) of gapped and local Hamiltonians follow instead an area law,
i.e., the entanglement entropy grows proportionally with the area of the cut [30]. For
a cut of an N-site chain as shown in Fig. 2.1(a) this implies that S(N) is constant for
N = ¢ (with € being the correlation length). This can be intuitively understood from
the fact that a gapped ground state contains only fluctuations within the correlations
length £ and thus only degrees of freedom near the cut are entangled as schematically
indicated in Fig. 2.1(b). A rigorous proof of the area law in 1D is given in Ref. [31].
In this respect, ground states are very special states and can be found within a very
small corner of the Hilbert space as illustrated in Fig. 2.1(c).

In slightly entangled states, only a relatively small number of Schmidt states con-
tribute significantly. This is demonstrated in Fig. 2.1(d) by comparing the largest 20
Schmidt values of an area law and a volume law state for a bipartition of an N = 16
chain into two half chains.

As an example of an area law state, we consider here the ground state of the
transverse field Ising model

H==Y on0m41+90%, (2.4)
n

with o2 and o being the Pauli operators and g > 0. The Zy symmetric model
with a phase transition at g = 1 has two very simple limits. For g = 0, the ground
state is twofold degenerate and given by the ferromagnetic product state (symmetry
broken) and at g — oo, the ground state is a product state in which all spins are
polarized (symmetric). For intermediate values of g, the ground states are area law
type entangled states (except at the critical point). As shown in Fig. 2.1(d) for a
representative example of g = 1.5, the ground state has essentially the entire weight
contained in a few Schmidt states. Generic states fulfilling the area law show a similar
behavior and thus the above observation provides an extremely useful approach to
compress quantum states by truncating the Schmidt decomposition. In particular, we
can always truncate the Schmidt decomposition at some finite x such that

This particular property of area law states is intimately related to the MPS represen-
tation of 1D quantum states as we will demonstrate in the next section.

The situation is very different for a highly entangled (volume law) random state:
All the Schmidt values are roughly constant for all 2¥/2 states and thus only little
weight in contained in the 20 dominant states (assuming an equal weight, we find
~ 1/2N/2 per Schmidt state).

) = > Aala)r @ |a) g

a=1

<€ Ve>0. (2.5)

2.3 Matrix Product States

A generic quantum state |¥) on a chain with NV sites can be written in the following
MPS form [32-34]:

Oy = > AWM ARG AN ). (2.6)

J1s-0JN
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Fig. 2.2 Iterative conversion of a state [¢) given by a rank-N tensor ¢, ,...;, using successive
Schmidt decompositions in a diagrammatic representations. The horizontal lines represent the
bond (Schmidt indices) «, 8,7, ... and the vertical lines the physical indices j, € {1,...,d}.
Connected lines between tensors denote summation over the corresponding indices (see text
for details).

Here, Al™in is a y,,_1 X x,, dimensional matrix and |j,,) with j, = 1,...,d is a basis of
local states at site n. We call the indices of the matrices “bond” indices. The matrices
at the boundary, i.e., n = 1 and n = N, are vectors, that is xg = xny = 1, such that
the matrix product in Eq. Eq. (2.6) produces a number. The superscript [n] denotes
the fact that for a generic state, each site is represented by a different set of matrices.

In order to provide some intuition for the structure of MPS, we demonstrate how
to transform a generic quantum state

[0) = D Cjiarin s d2s - GN) (2.7)

J1,d25--:JN

into an MPS. This can be done exactly by performing successively Schmidt decompo-
sitions as shown diagrammatically in Fig. 2.2. This diagrammatic representation, in
which a rank-NN tensor is represented by a symbol with N legs, is very useful for rep-
resenting tensor networks and related algorithms. Connecting the legs among tensors
symbolizes a tensor contraction, i.e., summing over the relevant indices.

We start by performing a Schmidt decomposition Eq. (2.1) of the state |¢) into
the first site and the rest such that

Z Ay pylan) ... n- (2.8)
1= 1
The states [a)[y) and |a1)2,... v form an orthogonal basis for the left and right part,

respectively. The first matrix A[Olé]lj ' in the MPS is the matrix relating the left Schmidt
states |aq )1 with the local states |j1) (describing the local states on the first site) and

is given by A([ﬂj ' = (j1]a1)py). The resulting mixed representation of the state reads

Z Z AL AR ) ) o, - (2.9)

ji=lai=1

Next we proceed to the next bond and perform a Schmidt decomposition of the state
such that
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d2
) = > AZlao) o laz)s,... n- (2.10)

as=1

The second matrix Ag}{ﬁz then relates the mixed basis states |ay)[y)[j2) with the left

Schmidt states |az)(1 9 and is given by A[La& = [{on|pj(s2l] l2)1,2)- The resulting
mixed representation of the state reads

d d? d
[v) = Z Z Z ABJ“AL?}&AQ|j1,j2>|ozz>[3,‘..,m- (2.11)

a1=1az=1 ji,j2=1

This procedure can now be continued until reaching the right end of the chain. We
choose the last matrix AN to relate the states Aq |o,)[n] to the local basis |fp,).
Then it is easy to see that we finally arrive at a representation of the state that has
exactly the form Eq. (2.6).

The caveat is that the matrix dimension increases exponentially as we proceed
toward the center of the chain. However, we can make an approximation by neglecting
the Schmidt states that have a very small Schmidt values. For the ground state of the
Ising model discussed above, we can find a very good approximation of the ground
state as MPS by keeping only a maximal bond dimension of ~20 with a truncation
error that is of the order of the machine precision (independent of the system size).
The same picture can be generalized to all states that fulfill an area law. On more
general grounds it had been proven that ground states of one dimensional gapped
systems can be efficiently approximated by an MPS [35, 36].

2.3.1 Canonical form

The representation Eq. (2.6) is not unique as an MPS with the transformed matrices
Alnlin — x - Alnlin x 1 (2.12)

represents the same state, where the X,, are x,, X x, matrices. In the following, we will
show how to fix this degree of freedom by introducing a convenient canonical form of
the MPS in which the bond index corresponds to the Schmidt decomposition.

Without a loss of generality, we write the matrices A as a product of Xj—1 X Xj
complex matrices I'"J» and positive, real, square diagonal matrices A",

W)= Y rllaARIpREe AR ANSUPININ g, (2.13)

J1s--0IN

as pictorially illustrated in Figs. 2.3(a) and 2.3(b). Let us now motivate the particular
choice Eq. (2.13) for the MPS form. The freedom of choosing the MPS can be used to
define a “canonical form” of the MPS, following Ref. [37,38]. As we will see later on,
the canonical form has several very useful features. Any bond n defines a bipartition
of the system into sites L = {1,...,n} and R ={n+1,..., N} to the left and right
of the bond. From the form of the MPS, we can define a set of x,, wave functions
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Fig. 2.3 (a): Diagrammatic representation of the tensors I' and A. (b): MPS formed by
the tensors I' and A. (c): Definition of the right Schmidt basis states with respect to a
partition on a bond with index a. (d): Condition for the MPS to be in the canonical form.
The transfer matrix T* of Eq. (2.16) has been shaded. The upside-down triangles are the
complex conjugate of the I' tensors. (e): If the state is in canonical form, then the dominant
left eigenvector of TV is the “identity matrix” with eigenvalue equal to 1. A similar condition
applies for the right transfer matrix T'F.

la)n,....n) and |@) 41, N to the left/right of the bond [see Fig. 2.3(c)] such that state
takes the form

) = 5% A ) © 1) - (2.14)

The wave functions |a) /g are formed by multiplying all matrices to the left and right,
respectively. The MPS representation {1, Al TNV is in canonical form if: For
every bond, the set of Schmidt states along with A" form a Schmidt decomposition
of ¥. In other words we must have (&/|a)1,... n] = dara and (&' |Q) (i1, .N] = daa;
along with Z(A[o? ])2 = 1 on every bond. For finite systems, a generic MPS can be
transformed into canonical form by successively orthogonalizing the bonds starting
from either the left or right end of the chain [27]. A great advantage of the canonical
form is that local expectation values can be evaluated by only contracting the tensors
locally by using the orthogonality. Note that the MPS form we obtained above by
applying successively Schmidt decomposition provides naturally the canonical form
with Alnlin — Aln—1pnlin
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2.3.2 Infinite matrix product states

For infinite (N — o0) and translationally invariant systems, the set of matrices on
any given site becomes the same, that is '™ = IV and A" = A for all integers n.
Computing the overlaps (a/|a) g would appear to require an infinite tensor contraction.
For an infinite MPS, the orthogonality condition can be conveniently expressed in
terms of the transfer matriz T% [illustrated in Fig. 2.3(d)] defined as

OéOt ,85/ Z FO(,B( /,B/) ABAB/ (2.15)

where “*” denotes complex conjugation [38]. The transfer matrix 7% relates the over-
laps defined on bond n with overlaps defined on bond n+ 1. Given that the right basis
states |8) "+1] 6n bond n + 1 are orthonormal, the states o) "' on bond n will also be
orthonormal if T" has a dominant right eigenvector dgg (= 1) with eigenvalue n = 1,
as illustrated in Fig. 2.3(e). For the left set of states we define an analogous transfer
matrix T,

Thpp =3 Maha T2 5 (T2, 5) (2.16)

which must have a left eigenvector d, with n = 1. These eigenvector criteria are
clearly necessary conditions for all bonds to be canonical; in fact, assuming in addition
that n = 1 is the dominant eigenvalue, they are sufficient.

A state is called pure if the dominant eigenvalue is unique and mized if it is de-
generate. In the following discussions, we will always assume that the state is pure (in
fact every mixed state can be uniquely decomposed into pure ones). An algorithm to
explicitly transform an arbitrary infinite MPS to the canonical form involves diago-
nalizing the two transfer matrices T% and T* and is given in Ref. [39]. If the infinite
MPS is not translational invariant with respect to a one-site unit cell, all the above
can be simply generalized by considering a unit-cell of L sites which repeats itself, e.g.,
in the case of a two site unit cel, the tensors are given by

[2n] _ A [2n] _ AA
P 1B bt 5 (2.17)
for n € Z. Reviews of MPSs as well as the canonical form can be found in Refs. [40,
39,38].

The infinite MPS representation in the canonical form has a number of important
advantages. First, using the properties of the transfer matrices [Fig. 2.3(e)], it is very
convenient to evaluate local expectation values as well as correlation functions. Second,
with the help of efficient algorithms such as the infinite time evolving block decimation
(iTEBD) [38] or infinite density matriz renormalization group method (iDMRG) [41],
the ground state of a given Hamiltonian can be found in the thermodynamic limit. A
discussion of the two algorithms using the same notation as used in these notes can
be found in Ref. [42].

2.3.3 Examples of infinite MPS

To become more familiar with the infinite MPS representation, it is instructive to
consider a few concrete examples.



10 Entanglement and Matrix Product States

— =%(| 1) — | 41))

¢ =rener+E -y

Fig. 2.4 Diagrammatic representation of the AKLT states. The S = 1 sites (grey circles) are
decomposed into two S = 1/2 that are forming a singlet with the neighboring site (ellipsoids).

(1) Neel state. The state |... {1 ...) is a product state with a bond dimension
x = 1 and a local Hilbert space of d = 2. The infinite MPS representation is given by

rlelt — pl2n+ild — 1
T2t — plzn+1lr —
A[Zn] — A[2n+1] - 1.

Note that since the state is a simple product state, the matrices are actually simply
complex numbers. It is easy to see that a contraction of the infinite MPS yields the
desired Neel state. Furthermore, the corresponding transfer matrices trivially obey the
conditions for the canonical form.

(2) Spin-1 AKLT state. Affleck, Kennedy, Lieb, and Tasaki (AKLT) constructed
an S = 1 Hamiltonian for which the ground state has valence bonds between all
neighboring sites (see Fig. 2.4) [43]. The AKLT Hamiltonian consists of a sum of
projectors and reads

- T
H=Y 85+ §(5j5j+1)2, (2.18)
J

where S are the spin-1 operators. The ground state in the thermodynamic limit is
unique and has a simple (x = 2) infinite MPS representation

pinl-1 _ \/gat plnlo _ _\/zaz, pllt — ga— (2.19)
1/10
("l — /2
A \/; (0 1) . (2.20)

The state can be shown to be in the canonical form by diagonalizing the corresponding
left and right transfer matrices.
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Symmetry Protected Topological
Phases

3.1 Symmetry transformations of Matrix-Product States

For the study of SPT phases, it will be essential to understand how symmetry opera-
tions act on MPS. Let us consider an on-site symmetry operation which is applied to
all sites, i.e.,

[0) = [@ un(g)l |¥), (3.1)

where u, (g) is acting on site n with g being an element of the symmetry group G under
which the state |¢) is invariant. An example of such symmetry is the Zs symmetry
®),, o of the transverse field Ising model Eq. (2.4). In the MPS formulation, the
transformation corresponds to contracting the symmetry operation to all physical legs
as shown in Fig. 3.1(a). In order for a state to be invariant, the overlap of the original
state with the transformed state has to be of modulus one, i.e., |(¢|1))| = 1. Thus
the mixed transfer matrices of the original and the transformed MPS must have a

dominant eigenvector X with eigenvalues || = 1. The right mixed transfer matrix has

the form
TaRa’;,BB’ (g> = Z (Z Unn' (g) 2;3) (Fi/ﬁ’) : AﬁAﬂ' (32)

and fulfills
Z TaRd/;Bﬂ’ (Q)XB,B' =nXaa'- (3.3)
8,8
Analogously, we find a similar relation for the left mixed transfermatrix T%(g). See
also the diagrammatic representation in Fig. 3.1(b). If |n| < 1, the overlap between
the original and the transformed wave function decays exponentially with the length
of the chain and |¢) is thus not invariant.
In Ref. [44] it was shown that an MPS in canonical form that the matrices I/
transform under symmetry operations g as

> uig (@) = e U (U (g), (3.4)

with a diagrammatic representation as shown in Fig. 3.1(c). Here U(g) is a unitary
matrix which commutes with the A matrices, and (9 is a phase. ! It is clear that this

TAs U(g) commutes with A, it also commutes with the reduced density matrices p” and pf*.
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() ATATATA (© T Uaryie
un(g)} P) = Y "X X Y — 69
@no & =" ]
(v)
X=§X X0 (@) =noX
I A
79) T"9)

Fig. 3.1 (a): Transformation of an MPS under an on-site symmetry g applied to all sites. (b):
Representation of a symmetry operation in terms of the MPS. (c): Mixed transfer matrices
of the original and the transformed states.

is a sufficient condition for the mixed transfer matrices to have a dominant eigenvalue
of modulus one. To show that it is a necessary condition, one has to apply Schwarz-
inequality and use conditions of the canonical form. [44]. The matrices U(g) are form
a y—dimensional projective representation of the symmetry group of the wavefunction
and €19 is a linear (1D) representation [45]. The term projective means that the U(g)
are a representation of the symmetry modulo a phase. As discussed in the following
sections, the fact that the U(g) can be projective representations of the symmetries
are the key to understand SPT phases. Note that the matrices U(g) are actually a
representation of the symmetry operations in the basis of Schmidt states (this can be
seen by going back to the definition of the canonical form).

Similar relations can be derived for symmetries that are not on-site operations. For
a time reversal transformation I'V is transformed to (I'/)* (complex conjugate) on the
left hand side (including possible spin rotations). In the case of inversion symmetry
IV is transformed to (I')T (transpose) on the left hand side of Eq. (3.4). We refer to
Ref. [45] for further details.

3.2 Classification of projective representations

Let us assume a group G with group elements g; € G. Then the matrices U(g;) form
a projective representation of G if

Ul(gi)U(g5) = w(9i, 95)U(9ig;)> (3.5)

where w(g;, g;) € U(1) represent the so-called factor set. Thus a projective representa-
tion is a linear representation modulo a U (1) phase factor. In the case that all phase fac-
tors are unity, then the representation is a linear representation of the group. Because
of the associativity of the group (i.e., the elements of G fulfill g;(g;gx) = (gig;)9x), the
factor set must satisfy

w(gs, gr)w(9:, 959%) = w(gig;)w(9igj, Ik)- (3.6)

Transforming the matrices as U(g;) = 8(g:)U(g:), B(gi) € U(1) yields a new factor
set
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o) = PG
©191:91) = Bo) (g 999 (3.7

Two projective representations U(g) and U(g) that are related by such a transforma-
tion are considered to be equivalent and belong to the same class.

It was Isaac Schur who derived in 1904 a classification of different types of projec-
tive representation using so called “Schur multipliers” to label different classes. These
correspond to the second cohomology group Ha(G,U(1)) of a group G. Instead of
discussing the details of the proof, we refer for a general introduction to Ref. [46] and
consider some simple examples.

(1) Group Zy. The generators of the group are exp(im/N) rotations and the group
elements are {1, R, R%,..., RN}. For a projective representation of the group we can
assign an arbitrary phase such that UM (R) = exp(i¢). However, a simple rescaling
U(R) by exp(i¢/N) can always transform the projective representation to a linear one.
Thus this group has only one class and all projective representation can be transformed
into a linear one.

(2) Group D,. This group is generated by 7 rotations R, and R, about two or-
thogonal axes. Clearly, R2 = R? =1 and R,R, = R,R., thus the group elements are
{1, Rz, R, R R.}. The group D5 has two different classes of projective representations
which can be distinguished by the gauge invariant phase factor

U(Rm)U(RZ)U_l(Rr)U_I(RZ) = exp(iqﬁ)

with ¢ = 0,m. Clearly, as each element occurs with its inverse, the phase of the
commutator cannot be change by rephasing the operators.

Both cases can be realized using a representation of the rotations in terms of spin
operators by U(R,) = exp(iwS®) and U(R,) = exp(iwS*). The S = 1 representation
with

L (010 ~100
§*=—1101],5=| 000]. (3.8)
v2\o10 001

is a linear (¢ = 0) representation. The S = 1/2 spin matrices

. 1/01\ . 1/10
5 2<10>’52<0—1)' (3.9)

form a projective (¢ = ) representation. This can be seen easily as U(R;) = o, and
U(R.) = o, anti-commute (0., 0, are the Pauli matrices).

3.3 Symmetry fractionalization

We now come to the core of these notes and define SPT phases in 1D bosonic systems
that are protected by an on-site symmetry group G. The classification scheme is based
on the classification of projective representations in terms of the second cohomology
classes Hy(G,U(1)) [6-9]. While the general proof for the existence of SPT phases is
given in terms of a classification of fixed point wave functions of LU transformations
[7-9], we follow here a more intuitive approach.
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Fig. 3.2 (a): Partition of an infinite quasi-1D system into a segment S and an environment
E. The segment S is a finite region of the system chosen to be large compared to the corre-
lation length &. The Schmidt states on the segment of a ground state [¢o) are decomposed
into tensor products of the left («) and right (8) part. (b): Symmetry operations acting on
the dominant Schmidt states of the segment S can be represented in terms of operators act-
ing on the boundaries. (c): Given that |t¢) is an infinite MPS formed by the x dimensional
matrices {T'V, A}, then the contraction of the matrices yields the x* dominant Schmidt states
on the segment. (d): The Schmidt states on the segment transform under symmetry oper-
ation by local unitary transformations acting on the boundaries. These are the (projective)
representations of the symmetries as defined in Eq. (3.4).

We consider systems in which the onsite representation is linear (e.g., integer spin
systems). We show that a characteristic symmetry fractionalization occurs when ap-
plying a symmetry operation g € G to the dominant Schmidt states of a segment S of
length ¢ > £ that we cut out of the ground state as shown in Fig. 3.2(a) and (b). Using
the locality of the ground states, we show that the symmetry operations act only non
trivially on the boundary of the segment. We then argue that the representation of the
symmetry actions onto the boundaries provides exactly the projective representations
U(g) as defined in the preceding sections. As the two boundaries can be arbitrarily
far away from each other, the class of the projective representation cannot be changed
unless a phase transition occurs. Thus we can use it to define a phase! We define an
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SPT phase as a phase in which the boundary of the segment transforms projectively
under a symmetry operation g while the bulk is in a linear representation. Clearly, if
the necessary symmetries are broken, the phase is not longer well defined.

We will now discuss the details of the argument and relate it to the MPS formu-
lation. Starting from a ground state |¢)g) of a gapped Hamiltonian, we partition the
system into regions ESE as shown in Fig. 3.2(a). The Schmidt decomposition for this
bipartition is given by

o) =Y Ayl)Eh)s: (3.10)

Here |v) g5 are the Schmidt states. A crucial point is that if the width £ of the segment
is large compared to &, the fluctuations across the left cut should be independent of
the fluctuations across the right cut. The resulting Schmidt decomposition has then a
tensor product structure for the important (dominant) Schmidt states. Now we label
the left, right fluctuations by a and £ and replace the Schmidt index v by the pair
v = (o, B). Using Ay = ALAS and |7)g = o) ® |B) g, We have

W) = ALAF|a)L]aB)s|B) k. (3.11)
a,B

as illustrated in Fig. 3.2(a). In this decomposition, we can think of the indices «/f8
labeling the local fluctuations at the left/right of the segment. In each Schmidt state
|aB) s, the expectation values of any local operator has some particular spatial depen-
dence near the ends of the chain depending on « and 3, but this decays exponentially
to the ground state away from the ends. Therefore it is possible to transform between
these states by using operators defined on just the ends. A special case is the effective
representations of symmetries in terms of operators U(g) at the ends of the segments
as illustrated in Fig. 3.2(b).

The above argument becomes more transparent when representing the states as
MPS. With the definition of the canonical form, the states |af)g of a segment are
given by

aB)s = 3 (DIPADY2 AL g1, o, - ) (3.12)

{5i}

as shown in Fig. 3.2(c). Here we assume that the state |t¢g) is given as an infinite
and translationally invariant MPS. When /£ is large compared to the correlation length
&, these states are nearly orthonormal, that is (o/f'|saf)s ~ 0aradps. In this limit,
|aB)s are the Schmidt eigenstates of the segment. If we transform the state using
a symmetry operation g, then the matrices transform according to Eq. (3.4). As all
unitaries U(g) cancel each other with the bulk, only the ones at the two boundaries
remain and we obtain the form shown in Fig. 3.2(d). Now, the two matrices U(g) and
Ut(g) are the representations of the symmetry action in terms of the boundaries and
thus exactly those we introduced above. The phase factors €?(9) sum up to an overall
phase (which characterizes in fact different phases as long as translational invariance
is preserved). The class of the projective representation {U(g)} of g € G cannot be
changed locally and thus it is “stable” as long as the correlation length remains finite.
This is why SPT phases are stable as long as the symmetry is unbroken!
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In a closely related way, SPTs can be defined in the presence of symmetries that
do not have a simple on-site representation. Examples of symmetries are inversion and
time-reversal symmetries and combinations thereof. We refer to the Refs. [45,47,9,7,8]
for the details.

Note that the stability relies on the linear on-site representation of the symmetry.
If a model allows for local fluctuations of the representations (e.g, by mixing integer
and half-integer representations of the spin-rotation symmetry), the SPT phase can
be adiabatically connected to a trivial phase [48].

3.4 Spin-1 chain and the Haldane phase

We will now illustrate the main ideas of the classification of SPT by discussing a
specific example, namely the spin-1 chain described by the Hamiltonian:

H=7Y S Sj1+D> ()% (3.13)
‘ i

J

As already discussed in the introduction, the first term is the standard spin-1 Heisen-
berg model with antiferromagnetic exchange interactions which stabilizes the Haldane
phase [14,16]. When the single ion anisotropy D > 0 is tuned, the system undergoes a
phase transition between two gapped, symmetric phases at D ~ 1 [17-19]. The “Hal-
dane” phase at small D is an SPT phase and cannot be adiabatically connected to any
product state as long as we preserve either time reversal, bond-centered inversion, or
the dihedral group of the spin rotations symmetry [49,6]. It has been shown numeri-
cally, that the Haldane phase is adiabatically connected to the AKLT state |¢akrr).
The so-called “large D” phase is adiabatically connected to a simple product state

W}largc D> =... |0>|O>|0> ey

which is the ground state of the Hamiltonian for D — oo. As the phase is adiabatically
connected to a simple product state, we refer to the large D phase as trivial phase.
We now use the two simple representatives [¢axrr) and [tiage D) to characterize
the two phases. Besides many other symmetries, Hamiltonian Eq. (3.13) has a Dy
on-site symmetry. The Dy symmetry is a subgroup of the U(1) x Zs spin rotation
symmetry, namely the Hamiltonian is invariant under rotating all spins continuously
about the z axis and 7 rotations about the x axis. Clearly, the onsite representation
of the D5 in terms of the spin-1 degrees of freedom is a linear one. Let us now analyze
how the MPS representation Eq. (2.20) of [)akpr) transforms under the Dy symmetry.
Using Eq. (3.4) with gi being the 7 rotation about the x and z axis, we find that

U(Ry) =0, UR,) =0,
and 6 = 7 (To arrive it this result, one can simply apply the on-site symmetry op-

erations to the MPS). The representation of Dy is a projective one with the gauge
invariant phase factor U(R,)U(R.)UT(R,)U'(R,) = —1. The MPS representation of
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[1arge D) is a simple product state of matrices in the |0) state. Thus the MPS trans-
forms trivially under the Dy rotations

U(R,) =1, UR.) =1

with U(R,)U(R,)UT(R,)UT(R.) =1 and 6 = 0. As agued above, these phase factors
characterize the two phases as they cannot be changed unless the symmetry is broken
or the system undergoes a phase transition.
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Detection

The definitions in the previous section tell us exactly what kind of topological phases
exist in 1D bosonic systems and how to classify them. It does, however, not give us a
direct method to detect different phases. Here we discuss some practical ideas of how
to detect SPT in numerical simulations.

4.1 Degeneracies in the entanglement spectrum

In Ref. [45] it is pointed out that topologically non-trivial phases must have degen-
eracies in the entanglement spectrum. This is, all eigenvalues of the reduced density
matrices p” and pft for the bipartition of the system into two half chains are degener-
ate.

To see this, let us assume that the ground state is represented as an MPS and
symmetric under a symmetry group G. Using the Eq. (3.4), we find the symmetry
representation U(g) in terms of the auxiliary indices which commutes with the re-
duced density matrices. If the U(g) for g € G form a projective representation of the
symmetry group, we can find a set of non-commuting elements such that for exam-
ple U(g:)U(g;)U(g:)TU(g;)" = exp(i¢). The non-trivial commutation relations require
that the irreducible representations have dimensions larger than one which yields de-
generacies in the spectrum of p* and (p®). For example, if ¢ = 7 (which is the case in
the Haldane phase), then the spectrum is doubly degenerate, since p” and pf commute
with the two unitary matrices U,, U, which anti-commute among themselves.

4.2 Extraction of projective representations from the mixed
transfer matrix

The existence of degeneracies in the entanglement spectrum is a necessary condition
for non-trivial cohomology classes. However, this does not distinguish among various
non-trivial topological states (when there is more than one). Let us now show how
to directly obtain the projective representations U(g) with g € G for a given infinite
MPS state.

As we learned in the preceding sections, the matrices U(g) tell us how the Schmidt
states transform under the symmetry operation g. Thus we can obtain all (projective)
representations from the overlap of the Schmidt states with its symmetry transformed
partners by

Upir(9) = (Bl | @ui(@I8) |
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Fig. 4.1 Overlap of Schmidt states |a)r with its symmetry transformed partners. If the
chain is assumed to be very long, the overlap can be expressed in terms of the eigenvector X
corresponding the largest magnitude eigenvector |n| = 1 of the mixed transfer matrix (filled
grey circles). The right boundary yields an overall phase factor expiN6(g) which we ignore
here (see text for details).

where u;(g) are the linear onsite representations and |3) g the Schmidt states describ-
ing the right half chain. This overlap, represented in terms of an MPS in the canonical
form is shown in Fig. 4.1. In particular, it corresponds to multiplying infinitely many
mixed transfer matrices 7% (g) and hence only the dominant eigenvector X gz remains.
Clearly, as the state is symmetric under g, the dominant eigenvalue 1 of the general-
ized transfer matrix T%(g) is of modulus one. On the other hand, we can apply the
transformation Eq. (3.4) to each transformed matrix and see that only the U(g) at
the left end remains. Thus we can read off that

Upp(9) = Xpp- (4.1)

Here we normalize X such that XX = 1 and ignore a constant phase factor which
results from the right end. Thus the U(g) matrices can be obtained by simply finding
the dominant eigenvector of the mixed transfer matrix 77 (g). Note that if the infinite
MPS is not obtained in the canonical form, we need to multiply the RHS by the
inverse of the eigenstate of the transfer matrix. Once we have obtained the U(g) of
each symmetry operation g € G, we can read off the factor set and hence determine in
which SPT the state is. In a similar way, SPTs stabilized by time reversal or inversion
symmetry can be determined (see [50] for more details).

A useful procedure to detect SPT phases numerically from microscopic Hamiltonian
is to first use the iTEBD or iDMRG algorithm to find the infinite MPS representation
of the ground state. The projective representations of the symmetries and thus the
characterizing factor set can be obtained by diagonalizing the mixed transfer matrices.
This procedure is demonstrated by a simple Python program [51].

4.3 String order parameters

The method demonstrated above is very useful to detect SPT phases using MPS
based algorithms. It is, however, not practical for Monte Carlo simulations or in any
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(a)

b
®) U@

Fig. 4.2 Diagrammatic derivation of the string order S for a wave function which is sym-
metric under an internal transformation g and represented by an MPS in canonical form.
(a): String order involving a segment of transformed sites terminated by operators O* and
O®. (b): The matrices I'; transform according to Eq. (3.4) and all matrices U and U vanish
except the ones at the edges (c): Using the properties of the transfer matrices (defined in the
text), the expectation value in can be simplified for long segments.

experimental setup. For this we will show in this section how to derive non-local order
parameter that detect SPT.

Perez-Garcia et al. [44] showed that the string order parameter, which was origi-
nally defined for Zs X Zs symmetric spin chains [52]

S = lim (o] See™ Zisi<k 5T 52 ypg)

s lj—k|—o0

can be generalized for systems with other symmetry groups. The generalized form for
a state which is invariant under symmetry operations u(g) reads:

£—1
S(g,0%,0%) = Jim <wo o) | [Twite) | 0F(0) wo>. (4.2)

The non-vanishing of this expression for generic operators only means that the state is
symmetric, but does not distinguish among topologically distinct states. For example,
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the Z5 symmetric Ising paramagnet Eq. (2.4) has a non-vanishing string order with
04 = OB =1 and u(g) = o, even though it does not represent any non-trivial
SPT! Nevertheless, we will now show that if the operators O (1), OB (n) are chosen
appropriately, this order parameter can distinguish certain topological states. Beside
the necessary condition of the state being symmetric under g, there is a second more
refined condition for when the string order is nonzero, which can distinguish them. For
example, the string order defined by O4 = OP = S* vanishes in the large D phase.
Why does this occur even though the state is symmetric?

We will now closely follow a discussion given in Ref. [50] and show that Eq. (4.2)
can distinguish certain SPT because of a selection rule. Intuitively, the string order
corresponds to calculating the overlap between the wave function with g applied to
{ consecutive sites and the wave function itself. Since g is a symmetry of the wave
function, it does not change anything in the bulk of this segment and the overlap should
not vanish. A diagrammatic representation of the string order is given in Fig. 4.2(a).
If we represent the symmetry that is sandwiched in the middle using Eq. (3.4) and
ignore the overall phase factor e*?, we obtain the expression that diagrammatically
represented in Fig. 4.2(b). If £ is large, the part in between the U(g) and Uf(g) is
a product of orthogonal Schmidt states of the segment yielding a product of delta
functions dnqs on the left and dgg on the right [compare Fig. 4.2(c)]. That is, the
string order is equal to the product

8(9.0%,0%) = [t (AO*AU(9))] [tx (AOPAU* (g))] . (43)
where

OﬁAﬁ/ = ZTO%Q;ﬁﬂ/ (OA) and O_ga = ZTfQIQﬁﬁ/ (OB) (44)
o B

with the generalized transfer matrices as defined in Eq. (3.2). The product Eq. (4.3)
is nonzero unless at least one of the two factors is equal to zero. Whether the factors
vanish depends on the symmetry of the operators O4(1),0%(n) and can be seen
as a selection rule for string order. Such selection rules exist only in the presence of
additional symmetry. Thus, suppose that there are two symmetry operations g; and gz,
which commute but U (g;)U (gx)UT(g;)UT(g;) = €®. We consider the string correlator
S(gj,OA,OB)7 and focus on the left end of the interval. The operator O4 can be
chosen to have a particular quantum number under gy, i.e., u(gx)O*uf(gr) = €7 O4.
Then a short calculation shows that O4 transforms in the same way under U(g;), i.e.,
U(g;)04UT(g;) = €2 OA. Tt follows that

tr (AOAAUY(g;)) = tr (U(gx)AOAAUT (,)U (g1))
= 7= Ptr AOAAUT(g;). (4.5)

Thus we obtain a string order selection rule: the string order parameter vanishes if
o # ¢. Without the second symmetry 3%, the string order would not vanish. Hence
a nonzero string order in a state (though intuitively surprising) is actually not so
unusual; it is the wvanishing of a string order that is the signature of a topological
phase. Note that the string order might accidentally vanish (or become very small) at
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some points even in a phase where o = ¢. In that case one would have to find different
operators O /OP to distinguish the phases.

Note that the string order is not general in that there are SPT phases that cannot
be detected by this approach. First, there are SPT protected by non-onsite symme-
tries for which this approach obviously fails. Second, more complex onsite symmetries
exist which cannot be detected using simple string order parameters. Non-local order
parameters that can detect avery possible SPT can be found in Ref. [50].

The string order for the spin-1 Heisenberg chain can, for example, be derived simply
in this way. Consider the Heisenberg chain with the symmetries R* = exp(iwS*) and
R* = exp(iwS*). Then the selection rule implies that the string order vanishes in the
trivial phase if one of the operators O4, OF is odd under 7 rotations about the x axis.
The string order vanishes in the nontrivial phase if one of these operators is even (since
U~ is odd under flips about the z-axis in this phase). Thus the string order S(R,,1,1)
vanishes in the nontrivial (¢ = 7) phase and S(R,, S, S.) does not, while the situation
is reversed in the trivial (¢ = 0) phase. It is a nice exercise to derive the value of the
string order for the AKLT state which is known to be S(R., S, S,) = 0.444444.
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Summary

In these lecture notes, we first introduced some basic concepts of entanglement and
discussed the area law for gapped ground states in 1D. We then derived the MPS
representation and showed that these describe 1D ground states efficiently. Starting
from the MPS transformation operations, we introduced the concept of SPT phases.
Using an intuitive approach by studying the symmetry transformations of a segment
of consecutive site, we demonstrated the stability of SPT phases. Finally, we proposed
methods to detect SPT phases in numerical simulations.

While we discussed here only bosonic SPT in 1D, there exists a large number of
generalizations. For example, based on the fractionalization of symmetry operators,
the classification can be extended to fermionic models. Using the concept of symmetry
fractionalization, it can for example be shown that the Z classification of 1D topological
superconductors breaks down to Zsg in the presence of interaction [53,54]. Recently
there has been significant advance in understanding SPT phases in higher dimensions.
In particular it has been shown that SPT phases in higher dimensions can be classified
by higher order co-cycles H"(G,U(1)) [10].
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