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Transport of Dirac Surface States

D. Carpentier

1.1 Introduction

1.1.1 Purpose of the lectures

The occurrence of robust states at their surface is the most salient feature of three
dimensional topological insulators [29, 47]. Indeed, it is their existence in ARPES ex-
periments which is used as a signature of the topological property of the bulk bands.
These surface states turn out to be described by a relativistic two dimensional Dirac
equation at low energy. In these short lectures, we focus on the transport properties of
these Dirac surface states. While transport may not be the ideal probe of the existence
of Dirac-like electronic excitations, it remains a tool of choice in condensed matter.
In the following, we survey some of the transport properties of Dirac excitations and
the techniques appropriate to their studies. For the sake of pedagogy, we will focus on
simplest transport properties, neglecting in particular transport in hybrid structures
with superconductors which would deserve their own lectures.

Naturally, there is a strong overlap between the study of transport properties of
graphene and surface states of topological insulators. Indeed the low energy electronic
excitations of graphene are also described as two dimensional Dirac particles. The re-
cent discovery of graphene has led to a large amount of work on the associated trans-
port properties : there already exist textbooks and extensive reviews on the subject
including [10,19,20,35,24] and [14,65] on related matter. In the context of topological
insulator surface states, the review [12] focuses on the quantum coherent transport
properties. In these lectures, we start by a survey of classical transport properties of
Dirac fermions at high carrier concentration and the inherent anisotropic scattering
using Boltzmann equation. The minimum conductivity of evanescent Dirac states in
a short junction is described within Landauer formalism. Then the quantum coherent
regime is approached within the diagrammatic perturbation theory and Kubo for-
mula, in the spirit of [4]. This technique also allows to recover the results on classical
transport at zero and high chemical potentials.
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1.1.2 Dirac Surface States of Topological Insulators

Generic Hamiltonian. We will neglect the consequence of the possible presence of
conducting bulk states in the insulating gap. While in current experiments these states
are present we prefer to focus on the simpler ideal situation for pedagogical reasons.
A more realistic treatment should include the coupling between the surface and these
bulk states. While the surface of topological insulators is generically characterized
by an odd number of Dirac species [29, 47] we consider in the following the simplest
situation described by a single Dirac cone. For energies lying in the bulk gap, electronic
states are described as eigenstates of the low energy Bloch Hamiltonian

H(~k) = ~vF~σ.~k, (1.1)

where ~k is the two dimensional momentum along the surface and ~σ represents two
Pauli matrices for an effective spin 1

2 . The momentum-spin locking for eigenstates of
the Hamiltonian (1.1) is reminiscent of the bulk spin-orbit coupling at the origin of
the bulk band inversion. The hamiltonian (1.1) is invariant by a so-called symplectic

time reversal symmetry T which satisfies T 2 = −I [66, 21, 71] : TH(~k)T−1 = H(−~k)
with T = iσy C, C denoting the complex conjugation operator acting on the right. We
choose to write the eigenstates of (1.1) as

|u(~k = keiθ)〉 =
1√
2

(
1
±eiθ

)
with ε(~k) = ±vF~k. (1.2)

Note that the hamiltonian (1.1) is also relevant to discuss the transport at the surface
of weak topological insulators or crystalline topological insulators characterized by
an even number of Dirac cone but with a symplectic time reversal symmetry [48],
quantum wells close to a topological transition in which case a small mass term mσz
should be added [60], and other realizations (see [63] for a recent discussion of Dirac
matter).

Hexagonal warping. For energies far away from the Dirac point, the linearized Hamil-
tonian (1.1) has to be complemented by higher order terms, leading to a warping of
the Fermi-surface. In the case of the surface states of Bi2Te3, this warping corresponds
to an hexagonal deformation of the Fermi surface, and is due to an additional term in
the Hamiltonian for surface states

Hw =
λ

2
σz(k

3
+ + k3−), (1.3)

with k± = kx ± iky. The resulting hexagonal symmetry of the Fermi surface orig-
inates from the combination of a trigonal discrete C3 lattice symmetry with time
reversal symmetry [28, 39]. The corresponding dispersion relation ε2(~k = keiθ) =
~2v2F k2 + λ2k6 cos2(3θ) leads to the snowflake shape of constant energy surfaces [3].

Defining εF = ~vF kF and k = kF k̃(θ), the shape of the Fermi surface at energy εF is
conveniently parametrized by the dimensionless parameter b = λE2

F /(2~3v3F ) as

1 = k̃2(θ) + 4b2k̃6(θ) cos2(3θ). (1.4)

While this parameter takes reasonable small values 0.04 < b < 0.09 for energies
0.05eV < εF < 0.15eV for the Bi2Se3 compound, it ranges from b = 0.13 for εF = 0.13
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eV to b = 0.66 for εF = 0.295 eV in Bi2Te3 and leads to sizable consequences on
transport at high chemical potential [3].

Disorder. Transport amounts to describe scattering of electronic excitations, in par-
ticular on impurities. In the following, we adopt a statistical description of these im-
purities : we describe them by a continuous field corresponding to an additional term
V (r̂) 1 in the Hamiltonian. This field is random, and its realizations are chosen accord-
ing to a characteristic distribution P [V ]. For simplicity, we adopt the simplest con-
vention corresponding to a gaussian distribution, with vanishing average 〈V (r̂)〉V = 0
and variance 〈

V (r̂)V (r̂′)
〉
V

= γV(r̂ − r̂′) (1.5)

where 〈〉V corresponds to an average over disorder configurations and the correlation
γV(r̂) is exponentially decaying over a short distance ξ. We will often approximate it
by a δ function in the continuum limit.

This gaussian distributed potential can be recovered as the continuum limit of the
Edwards model of localized impurities [4]. Indexing independent impurities by j the

corresponding random potential is written as V̂ (r̂) =
∑
j v̂(~r− ~Rj), where v̂(~r) = v(~r) I

couples only to the density of Dirac fermions. The averaged matrix elements of this
potential between Dirac eigenstates are〈

|〈~k|V |~k′〉|2
〉
V

= ni|v(~k,~k′)|2
∣∣∣〈u(~k′)|u(~k)〉

∣∣∣2 ≡ γV(~k,~k′)
∣∣∣〈u(~k′)|u(~k)〉

∣∣∣2 , (1.6)

where ni is the impurity concentration. In the limit ni →∞, v(~k,~k′)→ 0 while keep-

ing γV(~k,~k′) = ni|v(~k,~k′)|2 constant we recover a gaussian continuous random field.
A more realistic treatment of the disorder encountered at the surface of topological
insulators, along the lines of [38], goes beyond the scope of these lectures.

1.1.3 Graphene

Low Energy Bloch Hamiltonian. Graphene consists in a hexagonal lattice of Car-
bon atoms whose electronic properties can be described by considering a single pz
atomic orbital per lattice site. The electronic Bloch wave function are naturally de-
composed on the two sub-lattices of the hexagonal lattice according to ψ(~k, ~x) =

ei
~k.~x
(
uA(~k, ~x) + uB(~k, ~x)

)
. The corresponding Bloch Hamiltonian acting on the func-

tions uA/B(~k, ~x) is written as

H(~k) =

(
g(~k) f(~k)

f(~k) g(~k)

)
. (1.7)

At low energy, only nearest neighbor hopping integrals can be kept, imposing vanishing
amplitudes diagonal in sub-lattice g(~k) = 0, and hopping between different sub lattices

f(~k) which vanishes at the two Dirac points ~K and ~K ′ = − ~K. The existence of two
cones, associated with states of opposites chiralities at a given energy, is a consequence
of the Nielsen-Ninomiya theorem [44] which states the impossibility to realize a lattice
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model with realistic couplings but a net chirality among its excitations [33]. Hence for

small energies eigenstates are labeled by a quasi-momentum close to either ~K or ~K ′ :
it is thus convenient to introduce a ’valley index’ and write an effective Hamiltonian in
this extended basis. By using f(± ~K+~q) = ~vF (±qx− iqy) we write the corresponding
Hamiltonian as

H(~q) =

(
H( ~K + ~q) 0

0 H( ~K ′ + ~q)

)
=

(
~vF~σ.~q 0

0 ~vF~σ.~q

)
(1.8)

where H(~q) acts on vectors of states (|u ~K,A(~k)〉, |u ~K,B(~k)〉,−|u ~K′,B(~k)〉, |u ~K′,A(~k)〉)
with the definition |uA/B(± ~K + ~q)〉 = |u ~K/ ~K′,A/B(~q)〉.

Time-Reversal Symmetry. The Hamiltonian (1.7) describes spinless fermions on the
hexagonal lattice : the spectrum for the electrons is spin degenerate and described
neglecting spin degree of freedom. Hence this Hamiltonian is invariant by time-reversal
symmetry for spinless electrons : if ψ(~k, ~x) is an eigenstate of energy ε~k then ψ(~k, ~x)

is also an eigenstate of same energy, where se use the notation ψ(~k, ~x) = Cψ(~k, ~x) for

the complex conjugate of ψ(~k, ~x). This symmetry manifests itself as H(−~k) = H(~k)
on the Bloch Hamiltonian (1.7). Expressed in the valley / sub-lattice Hilbert space, it
is written as

TH(~q)T−1 = H(−~q) ; T = (iτy ⊗ iσy) C. (1.9)

This anti-unitary time reversal operator satisfies T 2 = I, as expected for spinless
particles. Due to the emergence of the pseudo-spin 1

2 in sub-lattice space, the low
energy Hamiltonian H(~q) possesses a second time-reversal symmetry acting in each
valley on spin 1

2 fermions [14]:

T̃H(~q)T̃−1 = H(−~q) ; T̃ = (I⊗ iσy) C, (1.10)

which is a symplectic symmetry : T̃ 2 = −I. Two time reversal symmetries, which are
defined as anti-unitary operators commuting with the Hamiltonian, necessarily differ
by a unitary operator which commutes with the Hamiltonian : a standard symmetry
[50]. Here, this symmetry emerges in the low energy regime and consists in the exchange
of valleys (without reversal of momenta ~q) : U = iτy⊗I. The presence of these two time-
reversal symmetries, an orthogonal and a symplectic one, leads to a possible cross-over
between universality classes of phase-coherent weak localization physics : this cross-
over is controlled by the correlation of the disorder, and more precisely whether the
U symmetry is statistically preserved, i.e. whether disorder correlation is diagonal in
valley index [59] (see also [5, 42] for more realistic and complex descriptions at low
energy). In the present lectures, we focus on transport properties of a single Dirac
cone corresponding to the situation where the total Hamiltonian including disorder is
valley-diagonal, i.e. is invariant under the symmetry U .

1.1.4 Overview of the transport properties

The typical behavior of the electrical conductivity of Dirac fermions is represented in
figure 1.1. A remarkable feature is the existence of a non vanishing conductivity at the
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Fig. 1.1 Schematic behavior of the conductivity as a function of the Fermi energy (right)

for a Dirac dispersion relation (left). A characteristic feature is the existence of a finite

conductivity at the Dirac point (point A), which increases with the disorder amplitude. At

higher energies, a more common diffusive metallic behavior is recovered (point B), with

intrinsically anisotropic scattering properties.

Dirac point even in the absence of disorder [25,26,69,54,46,62,34]. We expect the trans-
port in this limit to be unconventional and quantum in nature as the Fermi wavelength
becomes increasingly large close to the Dirac point. Indeed, this conductivity at the
Dirac point was shown to correspond to a ”pseudo-diffusive” regime, with a statistics
of transmission coefficients characteristic of diffusive transport in conventional met-
als [62]. We will discuss this minimal conductivity in the clean limit in a tunnel barrier
geometry where it is related with the transport through evanescent Dirac states [62],
and its possible relation with the so-called Zitterbewegung of Dirac fermions [34].
When disorder is increased, both the density of states at the Dirac point and the as-
sociated conductivity increase. This increase can be described using a self-consistent
Born approximation [54], or alternatively a self-consistent Boltzmann approach which
can be extended to the the regime at high Fermi energies [2]. In this last approach, the
density of states is renormalized by the fluctuations of disorder or chemical potential,
which become dominant at very low Fermi energy : ε̃F = (

〈
(ε+ V )2

〉
V

)
1
2 . The quan-

tum regime of weak disorder is difficult to accurately describe within this Boltzmann
approach [1]. The behavior at stronger disorder in this quantum low energy regime is
a manifestation of the absence of Anderson localization for a model of a single Dirac
cone of fermions [45, 13, 51]. These Dirac fermions are the signature of the bulk topo-
logical property of valence bands : they cannot be gapped out, in particular by disorder
(provided the bulk gap does not close) [53]. This property was later used to obtain a
classification of topological phases, identifying those that allowed surface states robust
towards Anderson localization [50].

At higher Fermi energies (point B in Figure 1.1), we recover a standard situation
where the Fermi-wavelength is much smaller than characteristic lengths for transport,
including the mean free path : a semi-classical approach via the Boltzmann equation
is possible. As we will see, in this regime the manifestation of the Dirac nature of
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the electrons lies in the anisotropy of scattering, even in the presence of ”isotropic
impurities”. Naturally this property requires the use of a transport time, different
from the elastic scattering time, to define the diffusion constant. For small samples in
which transport can remain phase coherent over sizable distances, quantum corrections
to this diffusive transport have to be taken into account. The standard description
of this quantum regime was extended to the case of Dirac diffusion in the context of
graphene [5,42,36,43,6]. In this context, the result depends on the type of disorder and
its symmetry with respect to valley indices : we obtain a standard weak-localization
physics (orthogonal class), or weak anti-localization (symplectic class). The situation
of Dirac surface states of topological insulators is simpler as no cross-over is allowed
without magnetic disorder. We will describe this regime, following the diagrammatic
approach in the spirit of [4]. We will not discuss the Altshuler - Aronov effect. The
interested reader can turn to [52] for an alternative and interesting description of the
semi-classical regime for Dirac fermions as a propagation along classical trajectories.

1.2 Minimal conductivity close to the Dirac point

1.2.1 Zitterbewegung

The transport in the limit εF → 0 has been related to the peculiar nature of Dirac
fermions [62,34]. In particular, the occurrence of a finite conductivity in the clean limit
was discussed in relation with the Zitterbewegung i.e. an intrinsic agitation of Dirac
fermions [34]. Indeed, the current operator ~j = evF~σ associated with Hamiltonian (1.1)
does not commute with it. Hence 〈~j〉 is not a constant of motion for eigenstates of the
Hamiltonian, which signals the existence of a ”trembling motion” or Zitterbewegung,
around the center of motion [64]. This Zitterbewegung was claimed to play the role
of an intrinsic disorder manifesting itself in a finite conductivity at εF = 0 [34,35]. Of
particular interest is the geometry of a large ”tunnel” junction of Dirac material at
the Dirac point. Let us express the current operator in the eigenstates basis (1.2) of

the Hamiltonian (1.1) with ~k = keiθ :

jx = evF

(
cos θ i sin θe−iθ

−i sin θeiθ − cos θ

)
; jy = evF

(
sin θ −i cos θe−iθ

i cos θeiθ − sin θ

)
. (1.11)

In this basis, the non-commutativity of ~j with the Hamiltonian originates from the
off-diagonal terms describing transitions between the ±vF~k eigenstates. It is natural
to expect this Zitterbewegung to manifest itself strongly close to the Dirac point and
in the presence of broadening of the eigenstates originating from either disorder or
confinement. This is indeed what occurs.

1.2.2 Clean Large Tunnel Jonction

Following [62], we consider a wide barrier at the surface of a topological insulator, such
that the length of the barrier L is much smaller than its circumference W around the
sample, as shown on figure 1.2. The confinement of the tunnel junction is described
by the potential eV (x) 1 added to the Hamiltonian (1.1) with V (x) = 0 exactly at
the Dirac point for 0 < x < Lx and V (x) = V∞ outside of the barrier (x < 0 and
x > L). The periodic boundary condition in the y direction around the sample implies
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Fig. 1.2 Schematic representation of a tunnel junction at the surface of a topological in-

sulator. In the ideal situation, for a chemical potential inside the bulk gap, only the Dirac

surface states transport the current between the contacts.

the quantization of momentum along y: kn = n2π/W with −W/2 ≤ n ≤ W/2. The
conductance of the junction can then be deduced from the Landauer formula [32]

G =
W

L
σ =

e2

h

∑
n

Tn, (1.12)

where the Tn denote the transmission coefficients of the current carried by the different
modes of the junction. At ε = 0 only evanescent states carry current in the junction.
They are described by the eigenfunctions

ψ(x, y) =
1√
2

(
aeknx

be−knx

)
eikny. (1.13)

We recover here a crucial property of the Dirac Hamiltonian (1.1) : at each boundary
x = 0 or x = L, these evanescent states are entirely polarized in either the ↑ or ↓ state
(corresponding to localization in a single sub lattice in the case of graphene). This
is a consequence of the chiral symmetry of the Dirac Hamiltonian [30]: the operator
C = σz anticommutes with the Hamiltonian (1.1). Hence C relates eigenstates at

+ε(~k) to eigenstates at −ε(~k). However at ε(~k) = 0 this chirality symmetry implies
that all eigenstates of the Hamiltonian are also eigenstates of C. The conductance at
ε = 0 directly probes transport property of these chirality eigenstates, although in
their evanescent form.

We can now solve the standard diffusion problem through the potential well and
find the transmission coefficients

Tn(~k = keiθ) =
cos2 θ

cosh2(knL)− sin2 θ
' 1

cosh2 knL
for large V∞ i.e. kx � kn. (1.14)

In the limit of a wide and narrow junction W � L, the ensemble of transmission
coefficients Tn samples accurately the underlying distribution function ρ(T ) and we
find a dimensionless conductance
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g =
G

e2/h
=

+∞∑
n=−∞

Tn '
W

2πL

∫ +πL

−πL

1

coshx
dx =

W

πL
. (1.15)

This result corresponds to a minimal conductivity σmin = e2/(πh). Quite remarkably
the transmission coefficients are distributed according to the law [62]

ρ(T ) =
g

2T
√

1− T
, (1.16)

characteristic of the conventional orthogonal diffusive metallic regime. Accordingly, the
tunnel transport though a wide Dirac junction has been denoted a pseudo-diffusive
regime. The occurrence of the diffusive distribution function of transmissions explains
the identification between this tunnel conductivity and the diffusive conductivity of
long wide conductor in the presence of weak disorder presented in the following section.

1.2.3 Minimal conductivity from linear response theory

The above minimum conductance at the Dirac point in the clean limit can be recovered
in the case of a large sample of size L = W by using the Kubo formula. We follow the
approach of [49] (see also the earlier work [40]) and consider the Kubo formula for the
conductivity calculated within linear response theory :

σij(ω, β, τ) =

~
4πL2

∫
dε

fβ(ε+ ~ω)− fβ(ε)

~ω
Tr
(

ImĜA(ε, τ)ĵi ImĜA(ε+ ~ω, τ)ĵj

)
, (1.17)

where fβ(ε) is the Fermi-Dirac distribution function, the current density operator

reads ~j = evF~σ and the trace runs over the quantum numbers (spin and momentum)
of electronic states. In this expression ImĜA(ε, τ) = ĜA(ε, τ) − ĜR(ε, τ) where ĜR,A
correspond to the retarded and advanced Green functions for the hamiltonian (1.1),
with or without disorder potential V :

ĜR/A(~k, ε, τφ) =

[(
ε± i ~

2τφ

)
I−H(~k)− V

]−1
. (1.18)

Here τ stands either to an elastic mean free time τe in the disorder case, or a phe-
nomenological phase coherent time τφ(T ) for the Bloch states accounting for the inelas-
tic interactions of the electron with the phonons, other electrons, or magnetic Kondo
impurities [32]. In the presence of disorder, we approximate the average of the con-
ductivity over disorder 〈σ〉V by replacing the Green’s function in eq. (1.17) by their
average over disorder (see section 1.3.2 for a discussion of this point and refinements).
This simply amounts to replace the phase coherence time τφ by the shorter elastic
mean free time τe (see eq. (1.46),(1.48)). The (averaged) Green’s functions for the
Dirac fermions are written as

GR/A(~k, ε, τ) =
(ε± i~/2τ)I + ~vF~k . ~σ

(ε± i~/2τ)2 − ε2(~k)
. (1.19)
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The trace over spin space in the expression (1.17) can now be performed. The remaining
order of limits is crucial : we keep τ finite and using

lim
β→∞

lim
ω→0

fβ(ε+ ~ω)− fβ(ε)

~ω
= −δ(ε),

we obtain the minimal conductivity (using η−1 = 2τ) :

lim
β→∞

lim
ω→0

σij(ω, β, τ) =
2

~

(evF
2π

)2 ∫ ∞
0

dx
η2

(η2 + v2Fx)2
=

e2

πh
, (1.20)

which is precisely the result found for the wide and narrow junction using Landauer
formula. Note that a finite η or τ was crucial in deriving this result : its presence is
related in the clean case to either a dephasing time in the large sample geometry, or
a lifetime in the sample due to the presence of the absorbing boundaries for a narrow
strip considered in the previous section. The independence of the result (1.20) on τ
and thus on a weak disorder breaks down as the disorder strength is increased, as
shown in numerical studies [1], and in agreement with contribution of the quantum
correction (weak anti-localization) described in section 1.4.

1.3 Classical conductivity at high Fermi energy

At higher Fermi energies, represented schematically as the region of point B in figure
1.1, we recover a conventional situation of a metal with a Fermi wavelength 2π/kF
much smaller than length scales characteristics of transport (mean free path le or
the size of the sample L). This regime is conveniently described using a semi-classical
description. First we will identify the signature of the Dirac nature of excitations within
the Boltzmann equation approach, before resorting to the Kubo approach previously
introduced.

1.3.1 Boltzmann Equation

Classical phase space is spanned by variables ~rc, ~pc : a statistical description of a
ensemble of particles amounts to define a density of states f(~rc, ~pc, t) at time t. The
Boltzmann equation states that the evolution of this density of states is the sum of
three terms

∂f

∂t
= −d~rc

dt
.~∇~rcf −

d~pc
dt
.~∇~pcf + I[f ], (1.21)

where I[f ] is a collision integral defined below in eq. (1.31), which describes the evo-
lution of the density f due to scattering. To proceed in this semi-classical description
of electrons in crystals, we need equations of motions for d~rc/dt and d~pc/dt. It has
been recently understood that these equations not only depend on the band struc-
tures ε(~k) but also on geometrical properties of the field of eigenvectors associated
with these bands [67]. Although these geometrical characteristics do not enter the
simplest transport properties addressed in these lectures, it is interesting to introduce
them for extensions to e.g. the magneto-transport. Let us sketch briefly the derivation
of these semi-classical equations of motion [67,41].
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Semi-classical equations of motion. We want to describe the time evolution of a semi-
classical wave packet restricted to a single band indexed by n (or more generally a
subset of bands). This amounts to consider a wave packet

|ψ(n)

~rc,~kc
〉 =

∫
d2~k

(2π)2
χ(~k − ~kc)e−i(

~k+ e
~c
~A(~rc)).~rc |ψ(~k, n)〉, (1.22)

where 〈~r|ψ(~k, n)〉 = ei
~k.~r〈~r|u(~k, n)〉 are eigenstates associated with the band n, and the

vector potential ~A originates from the possible presence of a magnetic field. Imposing
the localisation of the wave packet around ~rc, i.e.

〈ψ(n)

~rc,~kc
|r̂|ψ(n)

~rc,~kc
〉 = ~rc, (1.23)

imposes that the phase of χ(~k − ~kc) is related to the Berry connexion in band n :

χ(~k − ~kc) = |χ(~k − ~kc)|ei(
~k−~kc). ~A(n)(~kc). (1.24)

In this expression, ~A(n)(~kc) is not a connexion defined on the field of electronic

states |ψ(~k, n)〉, but on the states |u(~k)〉 = exp(−i~k.r̂)|ψ(~k)〉 invariant by transla-

tions on the lattice. These states are eigenstates of the ~k-dependent Bloch Hamilto-
nian H(~k) = exp(i~k.r̂)H exp(−i~k.r̂). Following M. Berry [17] we can define a con-

nexion ~A(n)(~kc) associated to the parallel transport within the space of eigenvectors

|u(~k, n)〉 = exp(−i~k.r̂)|ψ(~k, n)〉. It is this connexion which naturally occurs in the ex-
pression (1.24) : it should not be confused with other ”projected” connexions which
can be defined in terms of Bloch eigenstates [16,27].

Following Sundaram and Niu [58], we write down a classical Lagrangian

L = 〈ψ(n)

~rc,~kc
|i~∂t|ψ(n)

~rc,~kc
〉 − 〈ψ(n)

~rc,~kc
|H|ψ(n)

~rc,~kc
〉, (1.25)

with

〈ψ(n)

~rc,~kc
|i~∂t|ψ(n)

~rc,~kc
〉 =

e

c
~rc.
d ~A(~rc)

dt
+ ~~kc.

d~rc
dt

+ ~
d~kc
dt
. ~A(n)(~kc) (1.26)

〈ψ(n)

~rc,~kc
|H|ψ(n)

~rc,~kc
〉 = ε(~kc)− ~B.~m(~kc)− eV (~rc), (1.27)

where ~m(~kc) is an orbital magnetic moment [67], which is neglected below. The La-
grange equations on L provide the required classical equations of motion :

~
d~kc
dt

= −e ~E − e

c

d~rc
dt
× ~B(~rc) with ~B = ~∇~r × ~A(~r) (1.28)

d~rc
dt

=
1

~
~∇~kε(~kc)−

d~kc
dt
×F(~kc) with ~F(~kc) = ~∇~k × ~A(~kc). (1.29)

Note that in the presence of time-reversal symmetry, the Berry curvature F(~kc) van-
ishes and we recover the standard classical equation of motion in a crystal. Focusing
on situations in the absence of a magnetic field, we will thus forget these Berry terms
in the following.
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Linear homogeneous response. We focus on the charge response of Dirac surface
states to a homogeneous field: this amounts to consider the homogeneous solutions
f(~pc = ~~kc, t) of the equation (1.21). This simplification does not hold when con-
sidering e.g. the thermoelectric current with a spatially varying temperature. In the
homogeneous case, the collision integral occurring in equation (1.21) is simply defined
as

I[f ] =

∫
d2~k′

(2π)2

[
f(~k′)

(
1− f(~k)

)
− f(~k)

(
1− f(~k′)

)]
M(~k,~k′) (1.30)

=

∫
d2~k′

(2π)2

[
f(~k′)− f(~k)

]
M(~k,~k′), (1.31)

where M(~k,~k′) is a transition amplitude specified below in eq. (1.38). By definition,
the equilibrium distribution which is stationary without any external perturbing field,
satisfies I[feq] = 0. Within linear response theory, we expand the stationary homo-

geneous distribution to first order in the perturbing field ~E around the equilibrium
distribution :

f(~k) = feq(~k) + f (1)(~k), (1.32)

where feq(~k) = nF (ε(~k)− εF ) where nF , εF are respectively the Fermi-Dirac distribu-
tion function and Fermi energy. Here and in the following we use the simpler notation
~k for the momentum parametrizing the semi-classical wave-packet. The Boltzmann
equation then simplifies into −e ~E.~∇~kf = I[f ]. The linearity in f of eq.(1.31) allows

to write to lowest order in ~E :

−e ~E.~∇~kfeq = I[f (1)]. (1.33)

Transport time approximation. The standard transport time ansatz for a solution
of the Boltzmann equation (1.21) amounts to replace the collision integral (1.31) by

I[f ] = τ−1tr f : if the external field ~E driving the system out-of-equilibrium is turned
off, τtr describes the characteristic time of relaxation towards equilibrium of the dis-
tribution f . We will discuss below the validity of this ansatz. Introducing the group
velocity ~v(~k) = ~∇~kε(~k), we can rewrite the equation (1.33) using the transport time
ansatz as

f (1)(~k) = −e ~E.(~v(~k)τtr)∂εnF (ε(~k)) ' e ~E.~Λtr(~k) δ(ε(~k)− εF ), (1.34)

where we introduced the vector transport lengths ~Λtr [55–57]. The equation (1.34)
expresses that the transport time ansatz accounts for the application of an electric
field ~E by a translation of the Fermi surface according to

f(~k) = feq(~k)− eτtr
~

~E.~∇~kfeq ' feq
(
~k − eτtr

~
~E
)

= nF

(
ε(~k) + e~Λtr(~k). ~E

)
. (1.35)

For an isotropic Fermi surface, it is natural to expect the response to a homogenous
electric field ~E to be independent of the direction of application : a single transport
time is necessary to describe this response. However, for an anisotropic Fermi surface
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with several symmetry axis, we expect different transport times or transport vectors
~Λ(~k, ~E) to be necessary to describe the response to different orientations of the applied
electric field with respect to the Fermi surface. This is the case for the hexagonally
warped Femi surface occurring e.g. in Bi2Te3 and introduced in eq.(1.4), as described
in [3]. Note that this anisotropy of the Fermi surface leading to the existence of different
transport vectors should not be confused with the anisotropy of scattering by disorder
which manifests itself as a discrepancy between transport and elastic mean free time.
In the case of Dirac surface states, the scattering is anisotropic, but the Fermi surface
remains isotropic when warping is neglected.

Conductivity. The current density can be deduced from (1.35) by using~j = e
∫
d2~k(f(~k)−

feq(~k))~v(~k). The conductivity tensor σαβ defined by jα = σαβEβ satisfies Einstein re-
lation σαβ = e2ρ(εF )Dαδαβ . To express the diffusion coefficients Dα we introduce the
coordinate k‖ along constant energy contours and ρ(ε, k‖) the corresponding density

of states satisfying d2~k/(2π)2 = ρ(ε, k‖)dεdk‖. We obtain

Dα =
1

ρ(εF )

∮
dk‖ ρ(εF , k‖)vα(k‖)Λα(k‖). (1.36)

In the case of an isotropic two dimensional Fermi surface we recover the usual form
Dx = Dy = D = τtrv

2
F /2, corresponding to

σxx(ε) = e2ρ(εF )
τtrv

2
F

2
=
e2

h

εF
2

τtr
~
, (1.37)

with : ρ(εF ) = εF /(2π~2v2F ) for Dirac fermions as opposed to ρ(ε) = m/(2π~2) and
σ = (e2/h)(v2F τm/~) for parabolic bands.

Transport Time. The conductivity depends on the phenomenological transport time
in (1.37) that we will now express in terms of the amplitude of the scattering potential.
Using the Born approximation the transition amplitude of scattering is expressed in
terms of the matrix elements of the disorder potential introduced in (1.6) :

M(~k,~k′) =
2π

~

〈
|〈~k|V |~k′〉|2

〉
V
δ(ε(~k)− ε(~k′)). (1.38)

The corresponding collision integral (1.31) satisfies the required condition I[feq] = 0

for any equilibrium distribution parametrized by the energy feq(ε(~k)). In eq. (1.6), we
identify a contribution specific to the Dirac fermion originating from the last term,
which expresses a strong backscattering reduction : scattering is much less efficient for
Dirac fermions than for non-relativistic electrons. This property is a signature of time-
reversal symmetry for a single Dirac cone : the states |ψ(~k)〉 and |ψ(−~k)〉 carry a spin
1
2 and constitute a Kramers pair: they are thus orthogonal. This property implies that
scattering for Dirac fermions is intrinsically anisotropic : we thus have to resort to the
standard description of transport properties in the presence of anisotropic scattering.
Let us plug back the expression (1.38) in the Boltzmann equation (1.33) with the
transport time ansatz :
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− e ~E.~v(~k)δ
(
ε(~k)− εF

)
= I[f (1)] =

1

τtr
f (1)(~k) (1.39)

⇒ ~
τtr

= 2π

∫
dθ′ρ(εF , θ

′) [1− v̂(θ).v̂(θ′)] cos2
(
θ − θ′

2

)
γV(εF , θ, θ

′). (1.40)

For Dirac fermions v̂(θ).v̂(θ′) = cos(θ− θ′): we obtain for an isotropic Dirac Fermi sea
ρ(εF , θ) = ρ(εF )/(2π) and a transport time independent on the incident direction:

~
τtr

= ρ(εF )

∫
dθ′

1− cos2 θ′

2
γV(εF , θ

′). (1.41)

The disorder amplitude γV was defined in eqs. (1.5,1.6). This expression of the trans-
port time has to be contrasted with the definition of the elastic scattering time which
enters e.g. in the Dingle factor for Shubnikov - de Haas oscillations :

~
τe

= ρ(εF )

∫
dθ′ γV(εF , θ

′). (1.42)

The discrepancy between the transport and elastic scattering times is a consequence
of the anisotropic nature of scattering, which originates in the nature of the Dirac
fermions in the present case. For an isotropic disorder for which γV(εF , θ) = γV(εF )
independent of θ, we recover the standard result τtr = 2τe : it takes twice longer for
Dirac fermions to diffuse isotropically than for conventional electrons.

Note that the expression (1.41) also implies that

σ =
e2v2F

2
ρ(εF ) τtr with ρ(εF ) τtr =

2~
πγV(εF )

. (1.43)

As a consequence of this result, for Dirac fermions in the classical regime the energy
dependance of the Boltzmann conductivity originates only from the disorder corre-
lations. Corrections to this behavior can be attributed to a renormalization of the
density requiring a self-consistent treatment beyond the Born approximation [38], or
to quantum corrections described below.

1.3.2 Linear Response Approach

We aim at recovering the previous classical conductivity for the Dirac fermions within
a linear response approach which allows later to incorporate quantum corrections. We
start from the Kubo formula, introduced in section 1.2.3 when studying the minimal
conductivity at the Dirac point.

Kubo formula. We consider the longitudinal conductivity σ = σxx of a sample of
typical size L. This conductivity is calculated within linear response theory from the
Kubo formula introduced in equation (1.17) in terms of the Green’s function defined
in eq. (1.18). Focusing on the zero temperature and ω = 0 longitudinal conductivity,
we can focus on the expression

σ =
~

2πL2
ReTr

(
ĵx ĜR(εF )ĵx ĜA(εF )

)
(1.44)

where the trace runs over the quantum numbers (spin and momentum) of electronic
states and we have neglected contribution ∝ GRGR,GAGA which are systematically
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of lower order than the terms we have kept in the following perturbative expansion
in 1/kF le [4]. This conductivity depends on disorder through the Green’s functions
(1.18). We focus on the diffusive regime, corresponding to the semi-classical regime
where λF is small compared to the mean scattering length le. The natural small
parameter is 1/(kF le). In this regime, we don’t expect the conductivity to depend on
the exact configuration of disorder, but only on its strength. Such a quantity is called
a self-averaging observable: its typical value identifies with its average over disorder
configurations which is easier to calculate.

Working perturbatively in the disorder allows to expand the retarded and advanced
Green’s functions following

ĜR = [(ĜR0 )−1 − V ]−1 = ĜR0
∞∑
n=0

(
V ĜR0

)n
, (1.45)

where the Green’s functions for the pure Hamiltonian are defined in eq. (1.19) with
τ = τφ and no disorder potential. Averaging any combination of these Green’s func-
tions over a gaussian distribution for V amounts to pair all occurrences of the disorder
potential V . When performing this task on the conductivity (1.44), two different pair-
ings appear : the first consists in pairing potentials V within the expansion of ĜR
and ĜA independently from each other, and the second pairing occurrences of V in
the expansion of ĜR with occurrences in the expansion of ĜA. The former amounts to
replace ĜR and ĜA by their average over disorder, while the latter corresponds to the
cooperon and diffuson contributions discussed below.

Averaged Green’s function and self-energy. Averaging the expansion (1.45) over dis-
order can be accounted for by introducing a self energy Σ defined as〈

ĜR
〉−1
V

= Ĝ−10 − Σ, (1.46)

where to lowest order in γV

Σ(ε) =

∫
d~k′

(2π)2

〈
V (~k′)V (−~k′)

〉
V
GR0 (~k − ~k′, ε) = γV

∫
d2~k

(2π)2
GR0 (~k, ε). (1.47)

The real part of this self-energy is incorporated in a redefinition of the arbitrary origin
of energies while its imaginary part defines the elastic scattering time

−Im(Σ) =
~

2τe
= πγVρ(εF ). (1.48)

Hence, the averaging procedure of the Green’s function amounts to replace the dephas-
ing rate of the bare Green’s function by : τ−1φ → τ−1φ + τ−1e . In practice, τ−1φ is often

negligible compared to τ−1e in this Mathiessen rule and averaged Green’s functions are
simply given by (1.19) with τ = τe. We can now use these expressions in the average
of the Kubo expression (1.44) by approximating

〈
GRGA

〉
V

by the product of averages
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GR
〉
V

〈
GA
〉
V

. Performing the remaining trace we recover an Einstein formula for the
conductivity

〈σ〉0 =
v2F τe

2
= D0e

2ρ(EF ), (1.49)

but with a diffusion coefficient D0 which is half the correct Boltzmann expression
(1.37). This discrepancy is the consequence of the inherent anisotropy of scattering
for Dirac fermions, which manifests itself in the difference between the transport and
elastic scattering times. In the present perturbative expansion, it occurs as the contri-
bution of an additional class of diagrams.

The dominant contributions : cooperon and diffuson. Standard diagrammatic theory
of the diffusive regime amounts to sum an infinite set of dominant diagrams perturba-
tive in disorder strength [37]. These contributions are conveniently represented by the
diffusive propagation of pseudo-particles, the co-called diffusons and cooperons (see [4]
for a recent pedagogical presentation). We can resort to a simple physical argument to
gain an intuitive understanding of the origin of these contributions. This is most con-

~r1

~r2

C

C′

~r3
~r4

~r0

Fig. 1.3 On the top : contribution corresponding to an electron and hole moving along

the same path C = C′, denoted as the propagation of a diffuson. (Bottom) : contribution

corresponding to an electron-like and hole-like excitation moving in opposite directions along

a loop of the path. Along this loop, this correspond to the propagation of two particles in the

same direction, accounted for by the diffusive propagation of a cooperon. Note that in this

last case, quantum crossing between paths occurs at point ~r0.

veniently done by considering the probability to transfer an electron across the sample
from position ~r1 to ~r2, which is tightly related with the conductivity. In a semi-classical
description, this probability is related to the amplitude A~r1~r2 of diffusion from ~r1 to
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~r2, which itself can be summed à la Feynman over contributions labeled by classical
diffusive paths :

P (~r1, ~r2) = |A~r1~r2 |
2

=

∣∣∣∣∣∣
∑
C:~r1→~r2

AC

∣∣∣∣∣∣
2

=
∑
C,C′
ACA∗C′ , (1.50)

where C and C′ are two diffusive paths (or scattering sequences for discrete impurities),
from ~r1 to ~r2. AC ,AC′ represent the corresponding diffusion amplitudes along these
paths. Note that we can view A∗C′ as the amplitude of diffusion for a hole in the Fermi
sea.

Electrons are described in point ~r1 by a Bloch state, and when evolving along a
given path C their phase is incremented by kFL(C) where L(C) is the length of C (we
neglect any geometrical Berry contribution in this argument). In a good metal, which
is the situation considered in this section, the fermi wavelength 2π/kF is typically of
order of the crystal lattice constant. Hence this phase kFL(C) varies of order of 2π as
soon as the path is modified over a (few) lattice spacing(s). Hence, for two different
paths C 6= C′, the relative phase L(C) − L(C′) appearing in eq. (1.50) will vary by
2π over neighboring paths for which the amplitude |ACA∗C′ | can be assumed constant.
Hence this term will vanish upon the summation over the paths C, C′ (corresponding
to a disorder average). The only term surviving this summation are those for which
L(C) = L(C′). This property is naturally associated with pairs of identical paths C = C′
which can be viewed as the propagation of an electron and a hole correlated by the
disorder: this statistical coupling of path by disorder is conveniently viewed as the
propagation of a pseudo-particle called a diffuson. A second solution exists for a path
C containing a loop : see figure 1.3 (bottom part). In this case, the path C′ identifies
with C except around the loop along which the direction of propagation is reversed.
C′ possesses approximatively the same length as C. The corresponding contribution
can be viewed as the diffusion of a diffuson up to and from the loop, and the counter
propagation of a particle and hole around the loop. This counter propagation is also
interpreted as the correlated propagation of two particles along the same loop and
called a cooperon by analogy with Cooper pairs in superconductors. The existence
of the cooperon is tightly related to the time-reversal symmetry of transport which
identifies the amplitudes AC′ with AC : it will disappear upon application of a small
magnetic field. Note that on the bottom part of figure 1.3, a crossing of paths appears
when drawing the reconnection of a diffuson with a cooperon. The number of such
crossings will turn out to be the correct parameter for the perturbative theory.

Classical or Quantum ?. In the presence of a dynamic environment accounting for
the inelastic interaction of the propagating electrons with other electrons, phonons,
etc, we realize that the contribution corresponding to the diffuson is not affected :
both the electron and the hole contribution encounter the same environment during
their evolution, and are not dephased with respect to each other. Their possible in-
terference contributions are not affected by this fluctuating environment : this is the
signature of a classical contribution. On the other hand the cooperon contribution cor-
responds to an electron and a hole propagating in opposite directions along the loop
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= 〈GR〉V = 〈GA〉V = 〈V 2〉V

Fig. 1.4 Conventions for the diagrammatic perturbative theory.

Γ = + + + + · · ·

Γαβ,γδ(~q)

~k + ~q
2

α

~k − ~q
2

β

~k′ + ~q
2

γ

~k′ − ~q
2

δ

=

α

β

α

β

+ Γαβ,µν(~q)

~k + ~q
2

α

~k − ~q
2

β

~k′ + ~q
2 + ~q1

µ

~k′ − ~q
2 + ~q1

ν
~q1

~k′ + ~q
2

γ

~k′ − ~q
2

δ

Fig. 1.5 Diagrammatic representation of the recursive calculation satisfied by the diffuson

structure factor.

: they encounter different dynamical environment during their propagation, and are
dephased with respect to each other during this evolution. This is the manifestation
of a quantum contribution : we expect the cooperon contribution to correspond to
loops of length smaller than the typical dephasing length Lφ (with L2

φ ' Dτφ). When
we will study the conductivity fluctuations, we will encounter different cooperon and
diffuson which correspond to the propagation correlated by the disorder of a particle
and a hole evolving in different thermal environment : in this situation, both cooperon
and diffuson are affected by a dephasing due to their environment, and correspond to
quantum corrections to the conductivity fluctuations.

Diffuson contribution to the conductivity. Let us for now focus on the classical con-
tribution to the conductivity. For simplicity in the following we will consider a Dirac
cone without warping (see [3] for a non perturbative treatment of warping using the
diagrammatic formalism). According to the previous discussion, the correction to the
expression (1.49) of the conductivity comes from contributions of the diffuson (top
part of figure 1.3). The corresponding term requires the summation over a geometric
series of diagrams of same perturbative order [37,4]. It is best represented diagrammat-
ically: we will use the convention of figure 1.4 to represent averaged Green’s function
and disorder correlations (second cumulant). The real space picture of the diffuson
contribution can be represented as a contribution to the conductivity : it corresponds
to the insertion in the trace occurring in the Kubo formula (1.44) of a sequence (diffu-
sion path) of retarded and advanced Green’s function representing the evolution of a
particle and hole, correlated by the disorder. It turns out that sequences (or path) of
all lengths contribute to the final result : the summation over all sequences amounts
to consider a ”diffuson structure factor” Γ obtained from the algebraic sum of terms
shown in figure 1.5.
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The recursive nature of this algebraic sum represented in figure 1.5 can be expressed
by the relation

Γαβ,γδ(~q) = γV Iαγ ⊗ Iβδ + γV Γαβ,µν(~q) Πµν,γδ(~q), (1.51)

where we have explicitly written the dependance on spin indices, and Π is the quantum
diffusion probability [4] :

Πµν,γδ(~q) =
1

L2

∑
~q1

〈
GRµγ(~q1 + ~q)

〉
V

〈
GAνδ(~q1)

〉
V
. (1.52)

By using the expression (1.19) for the Green’s functions we can perform the integral
over momentum in the diffusive limit and obtain

Π(~q) =
1

2γV

[(
1− 2w2

e

)
I⊗ I +

1

2

(
1− w2

e

)
~σ ⊗ ~σ

− iwe (q̂.~σ ⊗ I + I⊗ q̂.~σ)− w2
e q̂.~σ ⊗ q̂.~σ

]
+O(w2

e), (1.53)

with we = τevfq/2� 1 in the diffusive limit and we used the notation ~σ = (σx, σy), q̂ =
~q/|q|. Note that in the present case, the ”complexity” of the structure factor Γ, i.e. its
spin content, originates from the free Green’s functions of the Dirac particles embedded
in the probability Π and not the symmetry of the disorder correlations γV as is standard
for quadratic bands [4].

+ Γ(~0) =

~k

~k

~k′

~k′

=

Jα

+

jα

Γ

jαΠ Γ

Fig. 1.6 Diagrammatic representation of the bare and diffuson contributions to the averaged

conductivity (top) and of the renormalization of the vertex current operator accounting for

the contribution of the diffuson (bottom).

The sum of the bare and diffuson contribution to the conductivity represented in
Fig. 1.6 are expressed as
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σ =
~

2πL2
ReTr [jx Π jx] +

~
2πL2

ReTr [jx Π Γ Π jx] , (1.54)

where we use the condensed notation for the spin contractions : Tr [jx Π jx] = jβαΠαβ,γδjγδ.
These two contributions can be recast as a modification or renormalization of the ver-
tex current operator using the equation (1.51), written in condensed form as γ−1V Γ =
I + ΓΠ :

σ =
~

2πL2
γ−1V ReTr [jx ΠΓ jx] =

~
2πL2

ReTr [jx Π Jx] , (1.55)

with the “renormalized” vertex current operator represented on figure 1.6 and defined
by

Jx = jx + ΓΠjx = γ−1V Γjx. (1.56)

Note that only the limit ~q → ~0 of Π(~q) enters this expression, which from eq. (1.53)
reduces to

Π(~q = ~0) =
1

2γV

[
I⊗ I +

1

2
σx ⊗ σx +

1

2
σy ⊗ σy

]
. (1.57)

From this expression, we obtain the renormalized vertex

Jα = (evF )γ−1V Γ(~q = ~0)σα (1.58)

= (evF )
[
I⊗ I− γVΠ(~q = ~0)

]−1
σα (1.59)

= (evF )2

[
I⊗ I− 1

2
σx ⊗ σx −

1

2
σy ⊗ σy

]−1
σα (1.60)

= 2(evF )σα = 2jα for α = x, y. (1.61)

The final contraction can be done without further algebra: we obtain twice the result
of eq. (1.49). This result correspond to a renormalization by 2 of the current operator
: Jα = 2jα. Hence we recover the Boltzmann result of eq. (1.43) : the anisotropic
scattering inherent to the Dirac nature of the particles leads to a doubling of the
transport time with respect to the elastic scattering time.

Note that the notation of equation (1.59) is misleading and should be read as Jα =
(evF )γ−1V limq→0 Γ(~q)σα. Indeed from the discussion around Fig. 1.3 we expect Γ(~q) to
possess long wavelengths diffusive modes, corresponding to eigenenergies ' 1/(Dq2)
of Γ(~q). These diffusive modes encode the quantum corrections to transport. As a
consequence, in the limit ~q → ~0 the operator I − γVΠ(~q) is no longer invertible and
Γ(~q) becomes ill defined. However we can explicitly check that the contraction Γ(~q).σα
remains well defined in this limit, which justifies a posteriori the above notation.
Indeed, the renormalization of elastic scattering time into a transport time occurs on
short distance, and is expected to be independent from the long distance physics of
the diffusive quantum modes. This is demonstrated by the above property: the vertex
renormalization of eq.(1.59) does not depends on the vanishing modes of I− γVΠ(~q),
but only on its (non universal) massive modes.
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1.4 Quantum transport of Dirac fermions

The last three decades have seen the exploration of electronic transport in conduc-
tors below the micrometer scale [9, 18]. Due to the interaction with its environment
the phase φ of an electron is randomly incremented during its evolution: this phase
evolution on the unit cercle is characterized by the rate of increase of the fluctuations
(δφ)2. As the electron evolves in real space, its phase φ spreads over the unit circle.
Beyond a characteristic length Lφ, the variance of the phase is of order (δφ)2 ' (2π)2

: the statistical uncertainty on the electron phase due to the coupling with the en-
vironment forbids any measurable interference effect. By lowering the temperature
(density of phonons), we increase the corresponding phase coherence length Lφ(T )
for the electrons (at lower temperatures, other mechanisms such as electron-electron
interactions and the Kondo effects on magnetic impurities take over). At temperatures
T ' 100mK the typical order of magnitude of Lφ(T ) is a few µm. The study of such
small conductors at low temperature has led to the appearance of a new domain of
research : the mesoscopic quantum physics [9, 18]. Many features of transport of such
mesoscopic conductors are remarkable : the quantum corrections to the conductance of
a mesoscopic conductor depend on the precise locations of impurities in a given sam-
ple : different mesoscopic samples prepared in exactly the same protocol (or successive
annealing of a given sample allowing for disorder reorganizations) display different
values of conductance. In this regime the phase-coherent conductance is said to be a
non self-averaging observable: it fluctuates from sample to sample for sizes L ≤ Lφ(T ).
In the limit L � Lφ(T ), the conductor can be viewed as an incoherent collection of
pieces of size Lφ(T ) and relative fluctuations are statistically reduced : we recover the
previous classical regime. The description of the conductance of a phase coherent con-
ductor requires the use of a distribution function, which for weak disorder is a gaussian
characterized by two cumulants. Moreover the conductance fluctuates as a function of
a weak transverse magnetic flux threading the sample. These fluctuations should not
be confused with noise : they are perfectly reproducible for a given sample and do not
fluctuate in time as typical 1/f noise. Indeed, the whole magneto-conductance trace
is modified as the sample is annealed : each curve appears as a unique signature of
the impurities location in the sample. It is a real fingerprint of the configuration of
disorder.

The origin of this magneto-conductance and its quantum origin can be understood
as follows. As hinted in section 1.3.2, along a given diffusive path, the phase of an
electronic state is incremented by δφL = kL where L is the length of the path. For
electrons at the Fermi level, k ' kF , and this phase δφL ' 2πL/λF is extremely sen-
sitive on the length L, typically much larger than the Fermi wavelength λF . Between
different samples the positions of these impurities are different, and all the lengths
L are modified by at least λF , and correspondingly the phases δφL are redistributed
randomly. The conductivity being a non self-averaging quantity, its value is then dif-
ferent from sample to sample. A different procedure allows to redistribute these phases
along the diffusive path : the application of a transverse magnetic field. The presence
of such a field can be accounted for by an extra dephasing e

∫
LA.dl along each path

L, A being the vector potential. The shape of these paths L and thus the associated
magnetic phases are random : similarly to a change of impurity positions, the mag-
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netic field redistribute the phases associated with each path in a sample and changes
accordingly the value of the conductivity. Whenever a new quantum of magnetic flux
is added though the sample, the typical phase shift between two paths crossing the
sample is of order 2π, and we obtain a different value of the conductivity. Moreover
this function G(B), called a magneto conductance trace, provides an invaluable access
to the statistics of conductance in the quantum regime. Since both the magnetic field
and the change of disorder amounts to redistribute the phases in a random manner,
we expect both perturbations to lead to the same statistics of the conductance. This
is the so-called ergodic hypothesis which turns out to be quantitatively valid for the
first two moments of the conductivity distribution [61].

Let us now consider the coherent regime of transport, relevant for transport on
time scales shorter than the dephasing time τφ(T ), defined from the imaginary part
~/(2τφ) of the self energy for electrons, see eq. (1.18). In this regime, and for weak
enough disorder which is the case experimentally, the conductivity is gaussian dis-
tributed, and fully characterized by its first two cumulants. The first cumulant 〈δσ〉V
describes the so-called weak (anti-)localization correction to the averaged conductivity
while the second cumulant

〈
(δσ)2

〉
V

is associated to the universal fluctuations of the
conductivity from sample to sample or as a function of the magnetic field. We have
already guessed in the discussion of the previous section that the origin of these quan-
tum correction to the conductivity lies in the existence of long wavelength statistical
correlations conveniently viewed as propagating diffuson and cooperon modes. In the
following, we will briefly review the description of the corresponding diagrammatic
contributions.

Γ̃( ~Q)

~k

~k

−~k + ~Q

−~k + ~Q

= H̃(0) Γ̃

Fig. 1.7 Diagrammatic representation of the first quantum correction to the averaged con-

ductivity (Left) and equivalent representation in terms of a contraction between a Hikami

box and Cooperon structure factor (Right).

1.4.1 Quantum Correction to the conductivity : weak anti-localization

The two contributions represented in figure 1.3 to the average conductivity correspond
to diagrams similar to that of Fig.1.6 with either a diffuson or cooperon structure
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factor. We have already seen in the previous section that the diffusive mode of the
diffuson does not contribute to the average conductivity : only short distance contri-
butions renormalize the vertex operator. Hence we only focus on the contribution of a
cooperon structure factor represented in Fig. 1.7 where Γ̃ is a structure factor, analo-
gous to the one in Fig.1.5, and accounting for an infinite series of maximally crossed
diagrams :

Γ̃ = + + + · · ·

This series of terms can be recast as a geometric series by time reversal of the ad-
vanced branch: similarly than for the diffuson, the cooperon structure factor satisfies
a recursive equation:

Γ̃αβ,γδ( ~Q)

~k +
~Q
2

α

−~k +
~Q
2

β

~k′ +
~Q
2

γ

−~k′ + ~Q
2

δ

=

α

β

α

β

+ Γ̃αβ,µν( ~Q)

~k +
~Q
2

α

−~k +
~Q
2

β

~k′ +
~Q
2 + ~q1

µ

−~k′ + ~Q
2 − ~q1

ν
~q1

~k′ +
~Q
2

γ

−~k′ + ~Q
2

δ

or equivalently

Γ̃αβ,γδ( ~Q) = γV Iαγ ⊗ Iδβ + γV Γ̃αβ,µν( ~Q) Π̃µν,γδ( ~Q), (1.62)

with

Π̃µν,γδ( ~Q) =
1

V

∑
~q1

〈
GRµγ(~q1)

〉
V

〈
GAνδ( ~Q− ~q1)

〉
V
. (1.63)

The value of Π̃ can be deduced by time reversal of the advanced branch of the ex-
pression (1.53) of Π(~q). From inversion of eq. (1.62) we obtain the long wavelength

behavior of the cooperon structure factor Γ̃( ~Q). Only one eigenmode is diffusive with
an eigenvalue 1/(DQ2) for Q → 0, corresponding to a singlet mode. Hence in the
diffusive limit the cooperon structure factor reduces to a projector onto this singlet
mode :

Γ̃( ~Q) =
γV
τe

1

DQ2

1

4
[I⊗ I− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz] (1.64)

=
γV
τe

1

DQ2
|S〉〈S|, (1.65)

where D is the diffusion constant D = v2F τe and |S〉 a singlet state defined in section
1.4.3.

The weak anti-localization correction represented on the left side of Fig. 1.7 is
conveniently viewed as a contraction of a cooperon structure factor and a Hikami box,
as shown on the right side of Fig. 1.7. The corresponding contribution is

〈δσ0〉 =
~

2πL2
Tr
[
GA(~k)JxGR(~k)Γ̃( ~Q)GR( ~Q− ~k)JxGA( ~Q− ~k)

]
. (1.66)
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In this expression, the ~Q integral (occurring in the trace over quantum numbers)

is dominated by the small ~Q contribution originating from the diffusive pole of the
cooperon. This justifies a posteriori the projection on the single diffusive mode in
(1.64). Focusing on the most dominant part of this expression, we can set Q → 0

except in the cooperon propagator, the Green’s functions being regular in ~k : this
amounts to set ~k = ~0 in the expression of the Hikami box.

Let us now turn to the expression of this Hikami box : it turns out that besides the
contribution depicted in Fig. 1.7, two other terms of the same order have to be included.
This is a standard mechanism when scattering is anisotropic [4], and follows from the
nature of the Dirac Green’s functions. The three contributions consist in considering
a renormalized Hikami box as the sum of three terms represented in Fig. 1.8. The

H̃

=

H̃(0)

+

H̃(1)

+

H̃(2)

Fig. 1.8 First renormalized Hikami box as the sum of three contributions.

integrals corresponding to the three terms are performed according to

H̃(0)
xx = 4

∫
~k

[
GA(~k)σxGR(~k)

]
⊗
[
GR(−~k)σxGA(−~k)

]
= ρ(εF )

(
2τe
~

)3
π

16
[−4 I⊗ I + 3 σx ⊗ σx + σy ⊗ σy] (1.67)

H̃(1)
xx = 4γV

∫
~k

∫
~q1

[
GA(~k)σxGR(~k)GR(−~q1)

]
⊗
[
GR(−~k)GR(~q1)σxGA(~q1)

]
=

π

16
ρ(εF )

(
2τe
~

)3

[I⊗ I− σx ⊗ σx] (1.68)

H̃(2)
xx = 4γV

∫
~k

∫
~q1

[
GA(−~q1)GA(~k)σxGR(~k)

]
⊗
[
GR(~q1)σxGA(~q1)GA(−~k)

]
= H̃(1)

xx (1.69)

Summing these three contributions we obtain the renormalized Hikami box :

H̃xx = H̃(0)
xx +H̃(1)

xx +H̃(2)
xx = ρ(εF )

(
2τe
~

)3
π

16
[−2 I⊗ I + σx ⊗ σx + σy ⊗ σy] . (1.70)

The resulting weak anti localization correction is obtained via the final contraction
with a cooperon structure factor (1.64) as shown on Fig.1.7 (with H̃(0) replaced by
H̃), and leads to the result:
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〈δσ〉V =

(
e2

π~

)
1

L2

∑
Q

1

Q2
=

(
e2D

π~

)∫ τφ

τtr

dt

4πDt
(1.71)

=

(
e2D

π~

)∫ τφ

τtr

P (0, t)dt (1.72)

' e2

πh
ln
Lφ
le
. (1.73)

The form of this correction appears reminiscent of its physical origin : it is due to the
cooperon interference at a point before and after a diffusive travel around a loop. Thus
this correction is proportional to the probability P (0, t) that this cooperon diffuses back
to its origin on loops smaller than Lφ,

1.4.2 Universal conductance fluctuations

We now consider the second cumulant
〈
(δσ)2

〉
V

of the distribution function of con-

ductivity, with δσ = σ − 〈σ〉V . From the relation (1.37) σ = e2ρ(εF )D, we expect the
fluctuations of conductance

〈
(δσ)2

〉
V

to originate either from fluctuations of the dif-

fusion coefficient e2ρ(εF ) 〈δD〉V or fluctuations of the density of states e2D 〈δρ(εF )〉V .
These two physical sources of fluctuations correspond to two different types of dia-
grams (Figs. 1.9 and 1.10). Their identification proceeds along the same lines as for
the average conductivity : similarly than with a Lego game, we need to assemble the
elementary blocks we have identified : the cooperon and diffuson structure factors and
the Hikami boxes. The diffuson structure factor is deduced from that of the cooperon
eq. (1.64) by time-reversal symmetry of the advanced branch: it reduces again to a
projector on a single state, denoted the diffuson singlet defined in section 1.4.3:

Γ(~q = ~0) =
γV
τe

1

Dq2
1

4
[I⊗ I + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz] (1.74)

=
γV
τe

1

Dq2
|S̃〉〈S̃|. (1.75)

Proceeding similarly than with cooperon, we identify a second renormalized Hikami
box for diagrams involving diffuson structure factors in Fig. 1.9:

H = ρ(EF )

(
2τe
~

)3
π

16
[2 I⊗ I + σx ⊗ σx + σy ⊗ σy] . (1.76)

The resulting contractions of the diagrams of figure 1.9 between two diffuson or
cooperon structure factors lead to the result

∆σ2
1 = 8

(
e2

h

)2∑
~q

1

(L2q2)2
. (1.77)

This contribution can be interpreted as describing the fluctuations of the diffusion
coefficient D [4].

A second contribution to the conductance fluctuations originates from diagrams
with a different topology, represented in Fig. 1.10. They describe the fluctuations of
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H̃ H̃

Γ̃

Γ̃

H H

Γ

Γ

Fig. 1.9 Diagrams describing the contributions to the conductivity fluctuations accounting

for the fluctuations of the diffusion coefficient.

H ′ H ′

Γ

Γ

H ′ H ′

Γ

Γ

H̃ ′ H̃ ′

Γ̃

Γ̃

H̃ ′ H̃ ′

Γ̃

Γ̃

Fig. 1.10 Diagrams describing the contributions to the conductivity fluctuations accounting

for the fluctuations of the density of state.

the density of states ρ(εF ) [4]. Their determination requires two additional Hikami
boxes:

H ′ = ρ(EF )

(
2τe
~

)3
π

16
[I⊗ I + σx ⊗ σx] (1.78)

H̃ ′ = ρ(EF )

(
2τe
~

)3
π

16
[I⊗ I− σx ⊗ σx] . (1.79)

The final results after contraction in spin space of these diagrams is

∆σ2
2 = 4

(
e2

h

)2 ∑
~q

1

(L2q2)2
. (1.80)

Summing the two contributions (1.77) and (1.80), we finally get the result:

〈(δσ)2〉V = 12

(
e2

h

)2∑
~q

1

(L2q2)2
=

12

π4

(
e2

h

)2 ∑
nx 6=0,ny

1

(n2x + n2y)2
. (1.81)



26 Transport of Dirac Surface States

The results (1.71,1.81) together define the quantum corrections to the diffusive trans-
port of Dirac fermions in d = 2. They correspond exactly to known result of the
Symplectic class in d = 2, and the previous calculations appear as a tedious way to
recover these results for the specific case of Dirac fermions. In the next section, we will
discuss that this is indeed the case by introducing the notion of universality class for
quantum corrections to diffusive transport.

Conductivity σ(φ)

Magnetic flux φ

0 φ0

UCF

Orthogonal

Symplectic

Unitary

〈σ〉V

Fig. 1.11 Schematic behavior of the quantum contribution to the averaged conductivity,

observed in samples of size large compared with the phase coherent length scale Lφ(T ), as a

function of a weak magnetic field for different symmetry classes. (i) In the orthogonal class,

corresponding e.g. to parabolic bands with charged impurities, a weak localization behavior is

present which vanishes when a magnetic field is applied leading to the characteristic behavior

represented by a plain line; (ii) In the symplectic class, corresponding e.g. to Dirac bands with

charged impurities, the quantum correction at B = 0 corresponds to a weak anti-localization,

leading to the behavior represented by the dashed curve; (iii) When time reversal symmetry

is broken (unitary class), no dependance on a weak magnetic field is observed (dotted line).

For short samples of size comparable with Lφ(T ), fluctuations of the conductivity occur as a

functions of the magnetic field, characteristic of the unitary symmetry class.

1.4.3 Notion of universality class

Universality class and number of diffusive modes. In deriving diagrammatically the
perturbation theory of weak localization, we have identified the building blocks as dif-
fusive modes, either cooperon or diffuson, and the Hikami boxes that reconnect these
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propagating modes to the current vertices. Moreover, we have found that the quan-
tum corrections to the two first cumulants of the conductivity probability distribution
function depends on the number of such Goldstone modes. This unusual universality
strongly points towards an effective field theory approach underlying the above per-
turbation theory. This is indeed the case, and the non-linear sigma model developed
to analyze the Anderson localization transitions turn out to be a very elegant frame-
work to understand the universal results in the perturbative regime and classify all the
possible universality classes [70], but also to derive in a systematic manner the higher
cumulants of the conductivity probability distribution function [8]. In particular, the
number of diffusive modes responsible for the quantum corrections to the conductance
appear as the “dimension” of the target space of this effective field theory. This clas-
sification of symmetry classes of quantum transport has been recently used to analyze
the occurence of topological order in a gapped phase from the stability of their surface
states with respect to disorder [50]. In this case, this stability manifests itself as a
topological term allowed in the field theory action, which forbids Anderson localiza-
tion. Such topological terms are irrelevant within the regime perturbative in disorder
on which we focus here, and won’t be discussed further.

A discussion of the field theory approach to the weak localization of electrons goes
beyond the scope of the present lectures. A thorough discussion of the construction of
the generating functional for the conductance moments can be found in ref. [8] (see
also [22]) while a recent pedagogical introduction can be found in the textbook [7]. The
general idea of this approach, inspired by the diagrammatic perturbative expansion
presented in the previous section amounts to consider cumulants of pairs of Green’s
functions GRGA occurring in the Kubo formula (1.44). When doing so, the pairings
between fermionic fields corresponding to both the cooperon and the diffuson modes
are treated on equal footing. This amounts, after standard field theory techniques, to
consider an action for the field

Q =


d↑↑ d↑↓ −c↑↓ c↑↑
d↓↑ d↓↓ −c↓↓ c↓↑
c∗↓↑ c∗↓↓ d∗↓↓ −d∗↓↑
−c∗↑↑ −c∗↑↓ −d∗↑↓ d∗↑↑

 , (1.82)

where c, d corresponds to the modes in the cooperon and diffuson pairing channels
(we consider spin 1

2 particles with no additional quantum number, as opposed to e.g.
graphene). In a typical Landau approach, the dominant terms of this action in the
long wavelength limit can be determined from symmetry constraints : the Gxoldstone
modes of the resulting non-linear sigma model, corresponding to the diffusive cooperon
and diffuson modes, are thus entirely determined by the dimension of space and the
statistical symmetry of the disordered model. We summarize below the results of this
approach.

The spin structure of the Dyson equation (1.51) reflects the construction of the
diffuson as the tensor product of two spin 1

2 associated with the retarded and the
advanced Green’s function. It is thus naturally diagonalized by using the basis of
singlet and triplet states for a spin 1

2 and a time reversed spin (with T | ↑〉 = | ↓〉 and
T | ↓〉 = −| ↑〉): |S〉 = 1√

2
(| ↑↑〉+ | ↓↓〉) , |T1〉 = 1√

2
(| ↑↑〉 − | ↓↓〉) , |T2〉 = | ↑↓〉, |T3〉 =
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| ↓↑〉. Similarly, the cooperon’s structure factor is diagonalized in the basis of two spin
1
2 : |S̃〉 = 1√

2
(| ↑↓〉 − | ↓↑〉) , |T̃1〉 = 1√

2
(| ↑↓〉+ | ↓↑〉) , |T̃2〉 = | ↑↑〉, |T̃3〉 = | ↓↓〉. In these

basis, the equation (1.51) and the equivalent one for the cooperon are diagonalized for
each state : the various diffuson and cooperon modes propagate either diffusively or
not. We can write formally

ΓS/T (~q) =
γV
τe

1

Dq2 + ηφ + ηD,S/T
, ; Γ̃S/T ( ~Q) =

γV
τe

1

DQ2 + ηφ + ηC,S/T
, (1.83)

with ηφ = ~/τφ. The various dephasing rates account for the possible decay over
short length scale of the respective mode : ηC/D,S/T = 0 for diffusive mode while it is
finite for modes contributing only on short length scales (cross-over between different
universality classes can be described along these lines [23]).

The general expression for the quantum correction to the averaged conductivity is
the sum of contributions

〈δσ〉V = −e
2D

π~

−1

4

1

Ld

∑
Q

1

DQ2 + η
(C)
S + ηφ

+
1

4

∑
α

1

Ld

∑
Q

1

DQ2 + η
(C)
Tα

+ ηφ

 , (1.84)

where d is the dimensionality of diffusion. In this expression, the cooperon singlet mode
occurs as a negative correction, while all triplet modes contribute a positive correction
: this quantum correction thus depends solely on the number of modes of the cooperon
structure factor. The different symmetry classes, initially identified through random
matrix considerations (see [15] for a general review), correspond to different number
of cooperon modes :

• in situation with spin rotation symmetry, corresponding to a spinless Hamilto-
nian with a time-reversal situation T 2 = I, all cooperon modes are present and
contribute to the quantum correction, which is negative. This corresponds to the
weak-localization situation.

• when spin-momentum locking occurs, either due to the pure Hamiltonian (Dirac
case) or due to the disorder type (spin-orbit disorder), all triplet modes are affected
and cannot diffuse on long distances. Only the singlet modes contribute to (1.84)
and we find a weak anti-localization. This corresponds to a situation where time-
reversal symmetry satisfies T 2 = −I. Note that the d = 2 situation of random spin-
orbit is special as disorder only affects the z components of spins : one triplet and
one singlet modes remains unaffected and we obtain a ”pseudo-unitary” class [31]

• finally when spin symmetry is broken, either by magnetic impurities or a magnetic
field, no cooperon modes diffuse and we obtain a vanishing quantum correction.

These three cases are summarized on the table 1.1.
Similarly the amplitude of conductance fluctuations can be written as the sum of

contribution from the different diffusive modes



Quantum transport of Dirac fermions 29

scalar disorder random spin-orbit magnetic disorder
quadratic dispersion Orthogonal Symplectic (d=3)

Pseudo Unitary (d=2)
Unitary

Dirac dispersion Symplectic Symplectic Unitary
Table 1.1 Summary of the symmetry classes for the different types to disorder for quadratic

and Dirac Hamiltonians.

Symmetry TRS diffuson cooperon weak UCF
Class symmetry modes modes localization

Orthogonal T 2 = I 1 S + 3 T 1S + 3T -2 8
Symplectic T 2 = −I 1 S 1S +1 2

Unitary 0 1 S 0 0 1
Table 1.2 Summary of the number of singlet (S) and triplet (T) modes for the cooperon

and diffuson structure factors. The weak localization contributions are represented as respec-

tive integer factors depending solely on the numbers of diffusive modes. The corresponding

proportionality factors are defined in eqs.(1.84,1.85)

〈
(δσ)2

〉
V

= F
(
ηD,Sm + ηφ

)
+

∑
α=1,2,3

F
(
ηD,Tαm + ηφ

)
+ F

(
ηC,Sm + ηφ

)
+

∑
α=1,2,3

F
(
ηC,Tαm + ηφ

)
(1.85)

where

F (η) = 6
∑
~q

1

((Lq)2 + η)
2 . (1.86)

Hence the conductance fluctuations depends linearly on the number of diffusive modes.
This is summarized in table 1.2.

1.4.4 Effect of a magnetic field

Transverse magnetic field. In the presence of a magnetic field, the probability of
return to the origin during time t of a diffusive walk is modified into [4] :

Zc(t, B) =
φ/φ0

sinh(4πBDt/φ0)
(1.87)

where φ = BL2 and the argument of the sinh function is the dimensionless magnetic
flux through the region 4πl2t typically explored by the diffusive path during time t :
l2t = Dt. The corresponding quantum contribution to the conductivity can be written
as

〈δσ(B)〉V = (# C, S −# C, T)
e2D

π~

∫ τφ

τtr

Zc(t, B) (1.88)

= (# C, S −# C, T)

[
Ψ

(
1

2
+

~
4eDBτtr

)
−Ψ

(
1

2
+

~
4eDBτφ

)]
(1.89)
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where Ψ(x) is a digamma function. This formula is commonly used as a fit to extract
the phase coherent time τφ from experimental transport measurements. Note that in
this case, the expression (1.89) describes a cross-over from the orthogonal or symplectic
class at B = 0 to the unitary class at larger magnetic field.

Aharonov-Bohm like oscillations. Finally we consider a cylinder made out of a topo-
logical insulating material, with a metallic Dirac metal at its surface (see Fig. 1.12).
The cylinder is considered long compared to the dephasing length scale Lφ(T ) so that
conductance fluctuations are negligible (they are statistically reduced by the incoher-
ent combination of contributions of domains of size Lφ(T )). This conductivity is thus
well described by its average 〈σ〉V , which consist of both the classical contribution
and the quantum correction. This quantum correction is due to the contribution of
cooperon diffusive modes. When a magnetic flux is threaded through the section of the
cylinder, this cooperon which carries a charge 2e acquires an Aharonov-Bohm phase,
leading to oscillations of the quantum contribution to the conductivity with a period
φ̃0 = h/(2e). As depicted on Fig.1.12, the phase of these oscillations is fixed by the

φ Conductivity σ(φ)

Flux φ

Orthogonal

Symplectic

Fig. 1.12 Schematic representation of the Aharonov-Bohm oscillations of a metal at the

surface of a cylinder. In the case of Dirac particles, we expect a behavior predicted by the

Symplectic symmetry class.

sign of the quantum correction at φ = 0, and thus the symmetry class. In the case
of Dirac fermions, these oscillations are reminiscent of the π phase acquired due to
momentum-spin locking by particles when winding around the cylinder in the ballis-
tic limit. However the absolute phase of these ballistic oscillations is very sensitive
to energy which renders it hard to measure experimentally. See [11, 68] for a recent
discussion of this effect in the context of topological insulators’ surface states, and [12]
for a detailed discussion. This concludes our introductory lectures to the transport
properties of Dirac surface states.
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