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1

Spin liquids and frustrated
magnetism

1.1 Introduction

Two important markers in the history of research on spin liquids and frustrated mag-
netism are Anderson’s suggestion [1], over 40 years ago, of the resonating valence bond
state as an alternative to Néel order, and Ramirez’ influential review [2], some 20 years
ago, of strongly frustrated magnets. There has been a tremendous amount of progress
since then but much remains to be done, especially in identifying experimental ex-
amples of spin liquids and understanding their properties. In these lecture notes I
aim to provide an introduction to the field that links our understanding of the classi-
cal statistical physics of these systems with approaches to their quantum mechanics.
Short complementary introductions can be found in the articles by Lee [3] and by
Balents [4]; more specialised reviews of various aspects of the field can be found in a
recent book [5]; and alternative approaches to the one taken in the present notes are
outlined in Section 1.6.

The term spin liquid is presumably intended to draw an analogy between possible
states of a magnet and the conventional three phases of matter, but this analogy fails
to capture some of the most interesting features of spin liquids. More specifically, it
is reasonable to see a paramagnet as being like a gas, since both states occur at high
temperature and are essentially uncorrelated; and it is also appropriate to think of a
Néel state as like a solid, in the sense that both have broken symmetry, characterised
by a local order parameter, and occur at low temperature. But whereas classical fluids
have only local correlations, we shall see that classical spin liquids may have a divergent
correlation length and power-law correlations. And in place of the Fermi surface or
Bose condensate of quantum fluids, quantum spin liquids may have topological order
and fractionalised excitations.

1.1.1 Overview

We will be concerned with the statistical mechanics and quantum mechanics of models
for magnetic degrees of freedom in Mott insulators. These have well-defined local
moments which we represent using simple spin Hamiltonians such as the Ising and
Heisenberg models. The models are said to be frustrated if different contributions to
the interaction energy have conflicting classical minima. The interest of frustration in
these systems is that it acts to destabilise conventional ordered states. Classically, one
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Fig. 1.1 Ground states of four antiferromagnetically coupled classical Heisenberg spins: the
two accidental ground-state degrees of freedom are the angle a between spins S; and S4, and
the angle 8 between the plane containing S; and S4, and that containing So and Ss.

sees this from a large contribution to ground-state degeneracy, which is accidental in
the technical sense that it is not a consequence of symmetry.

The ideas of frustration and accidental degeneracy can be illustrated by considering
a cluster of spins with antiferromagnetic interactions between all pairs in the cluster.
To allow some generality, we take a cluster of ¢ classical spins, represented using n-
component unit vectors S;. The Hamiltonian

a
H=J)» S;-S; = %|L|2—|—const. with L:ZSi (1.1)
(i) i=1
(where ., denotes a sum over pairs ij) is minimised in states for which the total
magnetisation L of the cluster is zero. When ¢ > 2, no state can minimise the interac-
tion energy J S; - S; of all pairs simultaneously. For example, a set of four Ising spins
with nearest neighbour antiferromagnetic interactions on a tetrahedron hence has a
ground state in which two spins are up and two are down. This gives a ground-state
degeneracy of six, rather than the generic value of two for Ising systems with time-
reversal symmetry. Replacing these Ising spins with classical Heisenberg spins, the
ground states (as illustrated in Fig. 1.1) have two internal degrees of freedom in addi-
tion to the three that arise from global rotations of any non-collinear spin arrangement.

Some of the most important lattices for the study of geometrically frustrated mag-
nets can be constructed as corner-sharing arrangements of clusters: examples are the
kagome and pryrochlore lattices, formed in this way from triangles or tetrahedra and
shown in Fig. 1.2.

It is useful for orientation to discuss the some selected examples of geometrically
frustrated magnetic materials, listed in Table 1.1, although we will not attempt any
sort of survey. An important characterisation is provided by the dependence of the
magnetic susceptibility x(7') on temperature 7'. At high temperatures it obeys the
Curie-Weiss law

1

X(T) T~ bow (1.2)
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Fig. 1.2 Two lattices: the kagome (left) and the pyrochlore (right).

and the magnitude of the Curie-Weiss constant fcw (negative if exchange is antiferro-
magnetic) reflects the energy scale of exchange interactions. Without frustration, one
expects ordering at a temperature scale set by |fcw|. By contrast, highly frustrated
systems remain in the paramagnetic phase to much lower temperatures, and in some
cases to zero temperature. Their low-temperature fate may involve freezing or a struc-
tural, frustration-relieving transition at temperature 7., and Ramirez introduced the
ratio

fow
= — 1.3
f=-2 (1.3
as a simple measure for the degree of frustration. The state of a system in the temper-
ature range Ocw > T > T, where spins are highly correlated but strongly fluctuating,
was termed by Villain [6] a cooperative paramagnet. This is the spin liquid state we
wish to characterise more thoroughly, at both the classical and the quantum levels.

Table 1.1 Selected examples of frustrated magnetic materials

Short name material magnetic lattice Spin model
size of moments value of Ocw
SCGO SrCrg_,Gag4,09 pyrochlore slabs  Heisenberg
S=3/2 Ocw ~ —500K
Spin ice HosTis O7 pyrochlore Ising
DyQTiQO7 ecw ~+1.9K
herbertsmithite ZnCuz(OH)gCly kagome Heisenberg
S =1/2 fow ~ —300K
k-ET k—(BEDT-TTF)3Cuz(CN)3  triangular Heisenberg
S=1/2 fow ~ —400K

These ideas are illustrated by the first material in our selection, SCGO. It has a
frustration parameter f > 100 [7] and magnetic neutron scattering shows strong spin
correlations at low temperature (via a peak in scattering at intermediate wavevector)
but no long-range order (from the absence of magnetic Bragg peaks) [8]. To obtain more
detailed information about low-temperature spin correlations using neutron scattering
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requires single crystals. These are not available for SCGO, but for spin-ice materials
so-called pinch-point features in the diffuse scattering [9], which are sharp in reciprocal
space, reveal long-range correlations in real space (see Section 1.4 and lectures at this
summer school by B. Gaulin).

The other listed materials, herbertsmithite and x-ET, are two of the best candi-
date quantum spin liquids. Neither shows signs of magnetic order, even at the lowest
accessible temperatures. Moreover, in contrast to the sharp response from magnon
excitations in an ordered magnet, single-crystal inelastic neutron scattering from her-
bertsmithite has structure broad in wavevector at all energies [10], as expected if the
energy and momentum imparted by scattered neutrons are shared between fraction-
alised excitations. Information on excitations can also be inferred from the dependence
on temperature 1" of the heat capacity Cp, which in x-ET at low temperature fits the
form C, = 4T + BT3 [11]. While such behaviour is familiar in a metal, a contribution
linear in T is remarkable in an insulator, suggesting formation of a spin Fermi surface
in a system that does not have mobile charges.

1.1.2 Classical ground state degeneracy

A first step in the discussion of classical frustrated magnets is to understand ground-
state degeneracy. The character of this problem is different according to whether we
treat discrete (e.g. Ising) or continuous (e.g. classical Heisenberg) spin variables, since
we should count discrete ground states for the former, and continuous degrees of
freedom within the ground-state manifold for the latter. In either case, a signature
of a highly frustrated system is that the number we obtain in this way is extensive,
suggesting that within ground states there are local fluctuations which take place
independently in different parts of a large sample.

For the discrete case, an illustrative example is provided by the nearest neighbour
Ising antiferromagnet on the pyrochlore lattice. Here an approximate but remarkably
accurate estimate was provided by Pauling in the context of water ice [12] (see Section
1.4 for details of the link between water ice, spin ice, and the Ising antiferromagnet). As
a start, note for a single tetrahedron that six states from a total of sixteen are ground
states. A pyrochlore Ising model consisting of Nt tetrahedra contains Ng = 2Nt
spins, since there are four spins per tetrahedron but each spin is shared between two
tetrahedra. It therefore has 22VT states in total. Treating the restriction to ground
states as if it were independent on each tetrahedron, the number of ground states for
the entire system is then estimated to be

No N Ns/2
() -(G) -() =
16 2 2
and from this the ground-state entropy per spin is %B In(3/2). Measurements of the
low-temperature entropy in spin ice, obtained from the magnetic contribution to the
heat capacity, are in striking agreement with this estimate [13].
For models with spins that can be rotated continuously, ground-state degrees of

freedom are the ones remaining after respecting all ground state constraints. We can
estimate their number D using an approach initiated in the context of mechanical
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systems by Maxwell [14-16]. Consider Ng classical n-component unit spins, consti-
tuting F' = Ng(n — 1) degrees of freedom. Suppose that these spins form a lattice
of N¢ corner-sharing, antiferromagnetically coupled, g-site clusters {a}. Each cluster
can be treated as in Eq. (1.1), and Ng = ¢N¢/2. Energy is minimised if the total
magnetisation L, of every cluster is zero: a set of K = nN( scalar constraints. If these
constraints can be satisfied simultaneously and are linearly independent, we have

D=F_-K= %(n—l)—n]]\fc. (1.5)

As an example, for Heisenberg spins (n = 3) on the pyrochlore lattice (¢ = 4) we get
in this way the extensive result F' = Ng¢.

1.1.3 Order by disorder

Extensive ground-state degeneracy, in either the discrete or the continuous sense, is
characteristic of many highly frustrated systems and offers a potential route to under-
standing suppression of order. However, not being symmetry-protected, this degener-
acy may be lifted by fluctuations, a phenomenon termed order by disorder [17,18].

y X Phase
V space

Accessible phase space at low
temperature

Fig. 1.3 Schematic view of phase space for a geometrically frustrated magnet: the ground
state manifold forms a high-dimensional subspace, and states accessible at low temperatures
(partly marked by shading) lie close to it. Coordinates in phase space can be separated locally
into ones (x) within the ground-state subspace and others (y) orthogonal to it.

The issues at stake are illustrated schematically in Fig. 1.3, where we consider in
phase space the configurations that are accessible at low temperature and lie close
to the ground state. Introducing coordinates x on the ground-state manifold and y,
locally orthogonal to it, by integrating out small amplitude fluctuations in y, from an
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energy H(x,y) at inverse temperature 8 one induces a probability distribution on the
ground state of the form (before normalisation)

Z(x) = / Dy e 1Y) o I Uj‘:‘(z) , (1.6)
k

where the right-hand expression follows from a harmonic approximation for the de-
pendence of H(x,y) on y, under the assumption that the components of y consist of
canonically conjugate pairs of generalised coordinates and momenta. Two alternatives
now arise: this probability distribution may either represent a system that accesses all
ground states at low temperature, or the probability density may be concentrated on
a subset of ground states. For the latter, the states selected by fluctuations are one
with [, wi(x) small. In practice these are likely to be states that are ordered in some
way, in which a subset of wy(x) vanish.

(a) (b)
-
I — -

)

(c) 0 0 (d)
/ ey e

—_— P

X/
AV

Fig. 1.4 An illustration of how soft modes arise in selected ground states. Consider two
ground states, (a) and (b), for four antiferromagnetically coupled spins, and two states (c)
and (d), obtained by rotating pairs of spins through small angles 0. The total magnetisation
varies differently with @ in the two cases. It is L o< 6% in the example based on a collinear
ground state, but L o 6 in the generic case. The energy cost of the excitation is hence H o 6*
in the collinear case, but is generically H o 62.

This point can be illustrated by a toy calculation for four antiferromagnetically
coupled classical XY (n = 2) or Heisenberg (n = 3) spins, with (1.1) as the Hamilto-
nian. The existence of a soft mode for special ground states in which all four spins are
collinear is demonstrated in Fig. 1.4. To examine the consequences of this soft mode,
consider at inverse temperature 3 the thermal distribution P(#) of the angle 6 between
a pair of these spins, defined via cosf = S; - S,. Let

Z(9) = /ngdS4 e PH. (1.7)
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Taking into account the volume factors of df and sin #df for n = 2 and n = 3
respectively, one has P(0)df « Z(6)df for n = 2 and P(0)df x Z(0)sinfdb for
n = 3. Tt is straightforward to evaluate Z(#) at large 8 and so obtain

(sinf)~! XY

P(0) { sinf/2  Heisenberg (1.8)

The non-integrable divergences of P(f) at 6=0 and 6=n for XY spins (which are
rounded at finite 3) indicates that fluctuations select collinear spin configurations in
the low-temperature limit. Conversely, Heisenberg spins sample all orientations even
at arbitrarily temperature.

Moving from this toy problem to an extended lattice, there exists a catalogue of
well-studied examples and a criterion for whether there is fluctuation-induced order.
Instances of classical order-by-disorder include the kagome Heisenberg antiferromag-
net (where co-planar spin configurations are selected [19]) and the pyrochlore XY
antiferromagnet (with collinear order [16]), while a converse case is the pyrochlore
Heisenberg antiferromagnet, which is thermally disordered at all temperatures [16].
A sufficient condition for order is that the ground-state probability distribution Z(x)
has non-integrable divergences in the vicinity of the subset of configurations favoured
by fluctuations, and one can assess whether that is the case by comparing the di-
mensionality of the full ground-state manifold with that of the soft subspace. For
n-component spins on a lattice of corner-sharing clusters of ¢ sites, order is expected
if n < (¢g+2)/(¢—2) [16].

In Monte Carlo simulations of models with continuous degrees of freedom, the
value of the low-temperature heat capacity C' per spin provides a diagnostic for the
presence of soft modes. A simple generalisation of the equipartition principle shows
that a dependence of energy H on mode coordinate 6 with the form H o |0]|™ im-
plies a contribution to C' from this mode of ki, /n. By this argument, one expects for
unfrustrated classical Heisenberg models (with two degrees of freedom per spin) the
value C = kp at low temperature. In contrast, for the pyrochlore Heisenberg anti-
ferromagnet, from Eq. (1.5) 1/4 of modes cost no energy. The remaining modes are
conventional, with an energy cost quadratic in displacement, and so C = 3kg/4 [16].
For the kagome Heisenberg antiferromagnet, one sixth of the fluctuation modes from
a co-planar ground state cost an energy quartic in displacement, while the remainder
are quadratic, so that C' = 11kg /12 [19].

Quantum order by disorder depends on different features of the fluctuation spec-
trum from its thermal counterpart. In the notation of Eq. (1.6), the zero-point energy
of quantum fluctuations out of the classical ground-state manifold generates an effec-
tive Hamiltonian

Mot (x) = %ka(x). (1.9)
k

Suppose Hegr(x) has minima for preferred configurations x = xo. There are quantum
fluctuations of x about these configurations, because the set of ground state coordi-
nates includes canonically conjugate pairs of generalised positions and momenta. At
large spin S the amplitude of these fluctuations is small and one always expects or-
der. Reducing S, we expect within this decription that a quantum-disordered ground
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state may emerge via delocalisation of the ground state wavefunction in the landscape
Hefr (X).

Experimental demonstrations of fluctuation-induced order rely on there being a
good characterisation of interactions, so as to show that these do not drive ordering in a
conventional way. For the garnet CazFeaGe3zO12, a material with two interpenetrating
magnetic lattices coupled via zero-point fluctuations, it has been demonstrated that a
spinwave gap in the Néel ordered state indeed arises mainly in this way, by independent
determination of the size of single ion anisotropy (the other possible origin for the
gap) [20], and via the characteristic temperature dependence of the gap [21]. In the
context of highly frustrated systems, ErsTioO7 has been thoroughly investigated as
an example of a system with quantum order by disorder [22].

1.2 Classical spin liquids

The problem of finding a good description for the low-temperature states of classical
frustrated magnets presents an obvious challenge. We would like to replace the high-
energy spin degrees of freedom, which have strongly correlated fluctuations at low
temperature, with a new set of low-energy degrees of freedom that are only weakly
correlated. Remarkably, this turns out to be possible for some of the systems of most
interest. Moreover, the emergent low-energy coordinates have simple and appealing
interpretations, which we introduce in the following.

1.2.1 Simple approximations

As context for a discussion of low-temperature states in frustrated magnets, it is useful
to examine what special features these systems present when treated them using some
of the standard approximations. In particular, it is worthwhile to see how in some cases
the absence of ordering is signalled within mean-field theory, and how an alternative
approach known as the self-consistent Gaussian or large-n approximation can often
give a good description of low-temperature correlations.

Recall the essentials of mean-field theory: thermal averages (...) with respect to the
full Hamiltonian H are approximated by averages (. ..)( using a tractable Hamiltonian
Ho. This gives a variational bound

F < (H)o— TS (1.10)

on the free energy F of the system, in terms of the energy (H)o and entropy Sy
computed from Hy. Taking a single-site Ho, these quantities are parameterised by the
site magnetisations {m;}, leading to an expansion of the form

(H)o — T'Sp = const. + Z Jijmimy + ngTZ m? 4+ O(m}), (1.11)

(i) i
with exchange interactions J;;, where n is the number of spin components. Choosing
the {m;} to minimise this estimate for F', one finds solutions of two types, depending
on temperature: above the mean-field ordering temperature T, all m; = 0, while for
T < T, some m; # 0. Within the mean field approximation, the value of T, and the
ordering pattern below T, are determined from the eigenvalues and eigenvectors of
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the matrix J;;: denoting the minimum eigenvalue (which is negative) by emin and an
associated eigenvector by ¢;, one has enin + kT, = 0 and m; oc ¢; for T' < T..
The distinction that arises in this framework between unfrustrated and highly frus-
trated systems concerns the degeneracy of €,i,. In a conventional system the minimum
eigenvalues form a discrete set. For example, in a nearest-neighbour square-lattice an-
tiferromagnet the eigenvalues of the interaction matrix, labelled by a wavevector q, are
J(q) = J(cos gy + cosgy), and so emin = —2J at q = (7, 7). By contrast, a number of
important examples of highly frustrated magnets lead to minima of J;; at all wavevec-
tors, forming dispersionless or ‘flat” bands across the Brillouin zone. Mean field theory
fails for these systems by wrongly predicting ordering at a temperature T, ~ |fcw]|.
A warning of this failure is provided by there being macroscopically many possible
ordering patterns ;.

The appearance of flat bands with nearest neighbour interactions J on lattices
built from corner-sharing clusters of ¢ sites can be understood via the same Maxwell-
counting approach that we employed in Eq. (1.5) to discuss ground-state degeneracy
of systems such as the classical Heisenberg model on the same lattices. We start from
the fact that ey is the minimum of ), ; Jijpip; subject to the constraint ), 07 =1.
For corner-sharing clusters, using i, j as site labels and « as a cluster label, we have

ZJijapigoj = JZ|Z<pi|2+const. (1.12)
ij

a [A<teY

Eigenvectors associated with ,;, therefore satisfy Zi@é w; = 0 for all a. Using the
notation of Eq. (1.5), these conditions amount to K = N¢ constraints on the F =
Ng = 4 Nc¢ degrees of freedom {g;}. Omitting sub-extensive terms, the degeneracy of
€min 1S therefore

D:F—K:(%—l)NC. (1.13)

For example, on the kagome lattice one third of eigenvectors have eigenvalue epin;
as there are three sites in the unit cell, the matrix J;; has three bands, of which the
lowest is flat. Similarly, for the pyrochlore lattice there are four bands, of which the
lowest two are degenerate and flat.

A successful treatment of these systems at low temperature must involve an average
over correlated low-energy states. The self-consistent Gaussian approach provides a
simple way of approximating this average, and is widely applicable to systems in
which all sites are symmetry-equivalent. The central idea is to replace an average over
orientations of classical, fixed-length spins by independent Gaussian averages over the
magnitudes of each component, with a variance chosen to maintain the correct spin
length on average. These simplifications are exact in the limit that the number n of spin
components is large, and in many instances they are remarkably accurate for n = 3 or
even for n = 1 [23,24]. Under this approximation the trace over spin configurations is

written
H/dsi...a(\si| —-1)~ H/dSi...e_%|Si‘2 (1.14)

with the Lagrange multiplier A determined by the condition (|S;|?) = 1. Denoting the
partition function by Z, a general thermal average then takes the form
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) = Z—l/d{si}...e*%Zu Si(BJiH+A0:3)8; (1.15)

In particular, the spin correlator is
(Si-S;) =n[BI+N7], (1.16)

and ) satisfies
n 1

Ns BT EN

If the minimum eigenvalues of J form a flat band, then in the low-temperature limit
(BJ + A)~! is proportional to the projector P onto this band, so that (S; - S;) o P;;.
In many of the systems we are concerned with (those with a Coulomb phase: see
Sec. 1.4.2), P;; falls off at large separation r;; as P;; ~ r;jd, where d is the spatial
dimension.

n[(BI+N)7, = (1.17)

1.2.2 The triangular lattice Ising antiferromagnet and height models

Moving beyond these simple approximations, we would like to find a description of
low-energy spin configurations that respects microscopic constraints imposed by the
Hamiltonian but is amenable to coarse graining. An early and illuminating example
is provided by a mapping which we now describe, from the triangular lattice Ising
antiferromagnet to a height model.

As background, we note that this Ising model (probably the first highly frustrated
magnet to be studied in detail [25]) has a macroscopically degenerate ground state,
and ground-state spin correlations that are known from an exact solution to decay with
distance as 7~1/2 . In ground states every elementary triangle of the lattice has two
spins parallel and one antiparallel. Degeneracy arises because many such configurations
include some spins that are subject to zero net exchange field and can therefore be
reversed at zero energy cost, as illustrated in Fig. 1.5 (left). To avoid confusion, we
should point out that the degeneracy on this lattice is specific to the Ising model, and

not a consequence of flat bands.
— Yy A‘
v T

JAVAVANSWAN AA

Fig. 1.5 Triangular lattice Ising antiferromagnet spin configurations. Left: state with a flip-

pable spin, marked with a circle. Centre: mapping from spins to heights at sites. Right:
mapping from spin orientations on the three sublattices (marked A, B and C) to triangle
heights in flat states.
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Spin configurations can be mapped onto a new variable, termed a height field, in
such a way that the ground-state condition in the spin model translates into a condition
that the height field is single-valued. The mapping associates an integer height h; with
each site ¢ [26,27]. To describe it, we introduce a direction on each bond of the lattice
in such a way that there is (say) anticlockwise circulation around ‘up’ triangles and
clockwise circulation around ‘down’ triangles. With the height of an origin site chosen
arbitrarily, the height change on traversing a bond in the positive direction is +1 if
the bond links antiparallel (unfrustrated) spins, and —2 if it links parallel (frustrated)
spins, as illustrated in Fig. 1.5 (centre). A convenient further stage is to define heights
h(r) at the centres of triangles that are averages of the three values at corners: see
Fig. 1.5 (right).

h h+1 h

h-2
W NV W Y

h— h— h—
h+1 h h+1

Y AN R “h /AN Nh-2

Fig. 1.6 Triangular lattice Ising antiferromagnet spin configurations and mappings to height
field. Left: state with flippable spin generating a flat height field (with the value h at all
triangle centres). Right: spin state without flippable spins, that generates a height field with

maximum gradient (heights at triangle centres decrease by 1 on going from any triangle to
its right-hand neighbour).

As demonstrated with examples in Fig. 1.6, configurations with a flippable spin
are locally flat, and those in which the gradient of the height field is maximal have no
flippable spins. These facts motivate a coarse-grained theory in which h(r) is taken
to be a real-valued function of a continuous coordinate, with an entropic weight on
configurations that (in the first approximation) has the form

Plh(r)] = 2 te ™ (1.18)

where

H= g/d2r|Vh(r)|2 (1.19)

and Z is the usual normalisation. The inverse mapping between spins and heights
(modulo 6) is shown in Fig. 1.5 (right) for the six distinct flat states. It has the
algebraic form

S(r) =~ cos(mh(r)/3 + ¢a), (1.20)

where we have omitted higher Fourier components of h(r), and the phase @, takes the
values 0, 427 /3 depending on the sublattice a.
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The height field A(r) has fluctuations that diverge logarithmically with separation,
as we see from an explicit calculation. For a system of size L x L, define the Fourier
transform

1 iar K
hqzz/ereq h(r) so that H=?¥q2|hq|2.
Then, with short-distance cut-off a,
2
([h(0) = h(X)]?) = 75 > (1 —cosq-r)(|hg|*)

q
1 1—cosq-r

= [ Pq—2—
27r2/ q Kq¢?
1

~ @M(r/a). (1.21)

Putting these ingredients together, we can evaluate the spin correlator using the
coarse-grained theory. For two sites on the same sublattice we obtain

(0(0)0(r)) o (¢ FHO=REN) — o= T5 (MO =hWI2) _ (1 /q)~7/18K (1.22)

The power-law form illustrates the consequences of large but strongly correlated ground-
state fluctuations, and a comparison with exact results for the Ising model fixes the
value of the height model stiffness as K = /9.

The leading approximation that has been made in using the height model to repre-
sent the triangular lattice Ising antiferromagnet is to treat h(r) as a real, rather than
integer-valued field. To correct this we can consider the replacement H — H + Hi
with Hy = —g [ d?r cos 27h(r), so that values of h(r) close to integers are preferred.
One finds that H; is an irrelevant perturbation at the renormalisation group fixed
point represented by H if K < m/2, as is the case for the height model that represents
the triangular lattice Ising antiferromagnet. Changes to the Ising model (for example,
higher spin [27]) may increase K so that H; is relevant. The height field than locks to
a particular integer value, representing long-range order of the Ising spins.

Excitations out of the ground state have an attractively simple description in
height-model language. From the rules of Fig. 1.5 we see that if the three Ising spins
of an elementary triangle have the same orientation, the height field is no longer ev-
erywhere single-valued: it changes by +6 on encircling the triangle that carries the
excitation. A single spin flip can introduce such excitations into a ground-state config-
uration only as vortex anti-vortex pairs vortices, since a local move leaves the distant
height field unchanged. A vortex and anti-vortex can be separated by additional spin
flips without further increase in exchange energy, and constitute our first example of
a fractionalised excitation.

Vortices are dilute at low temperature, because they have an energy cost 4.J. Their
presence also changes the number of ground states available to the system, and so they
have an entropy cost. This can be calculated within the height description. A vortex
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at the origin leads to an average height gradient at radius r of |Vh(r)| = 6/(27r). In
a system of linear size L this generates a contribution to H of

r / @ [Vh(m) = 2 (L fa) (1.23)

Similarly, the presence of a vortex anti-vortex pair at fixed positions with separation
r has an entropy cost that depends on their separation. As a consequence, the pair is
subject to an entropic attractive potential V(r) ~ 2£ In(r /a).

The entropy cost for vortices should be compared with the entropy gain 2In(L/a)
arising from translations: vortex anti-vortex pairs are unbound if 9K /7 < 2, as is the
case here. In the setting of the Ising model, this means that the power-law correlations
of the ground state are cut off at non-zero temperature by a finite correlation length,
set by the vortex separation. This correlation length is much larger than the lattice
spacing if T < J/kg, and it diverges as T — 0.

In summary, the triangular lattice Ising antiferromagnet provides an illustration
of a system that, in its ground state, combines finite entropy with long-range corre-
lations. The height model shows how these features can be captured in a long-wave
length description. The physics of the triangular lattice Ising antiferromagnet at low
temperature, including power-law correlations and fractionalised excitations, has im-
portant generalisations to other systems, including most notably spin ice. In addition,
some of the main theoretical tools used in a long-wavelength description of these gen-
eralised problems are extensions of the ones underlying the height model. Many of
these ideas are exemplified in classical dimer models, which we now introduce.

1.3 Classical dimer models

Classical dimers models [28-30] offer a setting in which to discuss some general features
of the statistical physics of systems that are both highly degenerate and strongly
constrained. They are important in their own right and also serve as the foundation
for a treatment of quantum spin liquids using quantum dimer models.

Fig. 1.7 States of square lattice dimer model. Left: close-packed configuration. Centre: local
rearrangement. Right: mapping to height model.

1.3.1 Introduction

The configurations of a dimer model are close-packed coverings of a lattice, with dimers
arranged on bonds in such a way that there is, in the simplest case, exactly one



14  Spin liquids and frustrated magnetism

dimer touching each lattice site. Examples are shown in Fig. 1.7. Entropy arises from
rearrangements of dimers. Consider, in an initial covering, a closed loop of bonds that
are alternately empty and occupied by dimers. The configuration on this loop can be
flipped, exchanging empty and occupied bonds, independently of the configurations
on other loops that do not intersect this one.

Close-packed dimer configurations on a planar lattice admit a height representation
provided the lattice is bipartite. Let z be the coordination number of the lattice, and
introduce the dual lattice, which has sites at the centres of the plaquettes of the
original lattice, and links intersecting the edges of these plaquettes. The height field is
defined at sites of the dual lattice: traversing in (say) an anti-clockwise direction the
plaquettes of the dual lattice that enclose A-sublattice sites of the original lattice, we
take the height difference to be Ah = +1 on crossing an empty bond, and Ah =1—z
on crossing the occupied bond, as in Fig. 1.7 (right). A simple generalisation is to take
dimer configurations in which exactly n dimers touch each site. Then Ah = +n for
empty bonds and n — z for occupied ones. These choices ensure that the height field
is single-valued

There is in fact an exact correspondence between close-packed dimer configurations
on the hexagonal lattice and ground states of the triangular lattice Ising antiferromag-
net. To establish this, note that the hexagonal lattice has as its dual the triangular
lattice. Under the correspondence, dimers on the hexagonal lattice lie across frustrated
bonds of the triangular lattice, as in Fig. 1.8. In a ground state of the Ising model, the
exchange interaction on exactly one edge of every elementary triangle is frustrated, and
so in the corresponding dimer covering, every site of the hexagonal lattice is touched
by exactly one dimer.

Fig. 1.8 The hexagonal lattice dimer model and its correspondence with ground states of
triangular lattice Ising antiferromagnet.

1.3.2 General formulation

While the mapping from dimer coverings to a height field is particular to two-dimensional,
bipartite lattices, it can be reformulated in language that generalises directly to higher
dimensions [31]. To do so, we first make use of the bipartite nature of the lattice to
define an orientation convention on nearest neighbour bonds, taking the direction to
be from (say) the A-sublattice to the B-sublattice. We then define for each dimer con-
figuration a flux in this direction on each link, which (for a lattice with coordination
number z) is 1 — z on links occupied by a dimer, and 41 on unoccupied links.
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This flux is constrained by its construction to be divergenceless for a dimer covering
that everywhere obeys the rule of exactly one dimer meeting each site. The constraint
can be resolved in the usual way, by taking the flux to be the curl of a vector potential
A(r). In the continuum this is of course familiar for a three-dimensional system. It also
applies to a two-dimensional system: one takes ff(r) = Zh(x,y), with Z the normal to
the plane of the system and h(z,y) a scalar, which we will see is simply the height
field.

The next step is to write a coarse-grained free energy for dimer configurations that
generalises the height model. In three dimensions as in two, coarse-grained states with
high entropy arise from configurations in which there are many short loops of bonds
alternately occupied and unoccupied by dimers, around which dimer occupations can
be flipped. Those loops correspond roughly to closed flux lines: flux has a constant
direction around each loop, although its magnitude alternates between occupied and
unoccupied bonds. Configurations containing mainly small closed flux loops generate
small values of coarse-grained flux, and conversely there is an entropy penalty attached
to large flux. This motivates the conjecture [31]

H = %/d%ﬁ « A2 (1.24)

as a generalisation of Eq. (1.19), from which the height model is recovered in two
dimensions via the substitution A(r) = 2h(z,y).

Despite the equivalent forms of H in two and three dimensions, there are impor-
tant differences. For the two-dimensional model, the value of the stiffness K determines
the location of the theory on a line of fixed points and controls which possible per-
turbations are RG-relevant. By contrast, for the three-dimensional model there are no
symmetry-allowed perturbations that are RG-relevant, and the value of K simply sets
the amplitude of fluctuations.

Dimer correlations can be evaluated straightforwardly since the theory is Gaussian.
We introduce a dimer number operator o;(r), which takes the value o7 (r) = +1 if the
bond in direction 7 centred at r is occupied by a dimer, and otherwise has the value
0+(r) = —1. Defining the flux density B(r) = V x A(r), the connected dimer density
correlation function is

Cri(r1,12) = (07,(r1)05(r2)) — (07,(r1))(03(r2)) o< (B (r1)B'(r3)) . (1.25)

In two dimensions, Bi(r) = ¢;;0;h(r) and we can compute (B*(0)B’(r)) by differ-
entiating Eq. (1.21), with the result

1 2.%'7;{17j — (Sij’l"z
2r K r4

(B'(0)BI (r)) = (1.26)

Similarly, in three dimensions, defining Fourier transforms in a system of linear size L
via

Bq=L7%? / Pre™B(r)  and  B(r)=L7%?) e By, (1.27)
q
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one finds
Bi BJ 1 5 945 \ s 28
(ByBi) = 4 < ij q2j> -k (1.28)

and hence [31]
1 3rirj — 0412
AT K rd
We see that, while dimer coverings of bipartite lattices described by this coarse-
grained theory are disordered, with finite entropy density and no local symmetry
breaking, the constraints of close packing and hard-core exclusion lead to power-law

correlations with a characteristic form. States with these correlations are known as
Coulomb phases [36].

(B (0)B(r)) = (1.29)

1.3.3 Flux sectors, U(1) and Z; theories

It is an important feature of of dimer models on bipartite lattices that the configuration
space divides into sectors which are not connected by any local dimer rearrangements.
For a system with periodic boundary conditions, these sectors are distinguished by
the values of total flux encircling the system in each direction. Dimer rearrangements
around short loops leave these global fluxes unchanged, and the order characterised
by the fluxes is referred to as topological.

This definition of global flux is illustrated in Fig. 1.9. Let N} be the number of
dimers that cross the line A-B on upward-directed links, and let V| be the number on
downward-directed links. (In d dimensions, this line is replaced by a (d—1)-dimensional
hypersurface.) Then the net flux across the line (or hypersurface) is ® = (1 — z)(Ny —
Ny), where the coordination number is z = 4 for the square lattice. The value of ®
is unchanged by flipping dimers on contractable loops (ones that do not wrap around
the system), as shown in Fig. 1.9 (4i) and (i49). Moreover, although microscopic values
of the flux ® are discrete, this restriction is unimportant after coarse-graining: for
a three-dimensional system in the continuum limit we can view /Y(r) as the vector
potential for a continuous-valued flux density B(r) = V x A(r). Then Eq. (1.24) is
simply the action for a U(1) gauge theory.
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Fig. 1.9 Flux sectors in a bipartite lattice dimer model. (i) Orientation convention on edges
of the lattice. (i7) A dimer flip on the marked loop changes both Ny and N, by 1. (iii) A
dimer flip on a different marked loop changes local contributions to Ny by £1 but leaves its
net value unaltered.

Dimer models can equally be defined on lattices that are not bipartite, but the long-
distance physics in these cases is very different. For these systems it is not possible to



Classical dimer models 17

define a local divergenceless flux, and sectors of configuration space are labelled by Zo
rather than U(1) quantum numbers. For a d-dimensional system there are d of these
quantum numbers, giving the parity of the number N of dimers intersecting a set
of (d — 1)-dimensional hypersurfaces. A change in the dimer configuration produced
by flipping dimers on a contractable loop leaves these parities unchanged. To see
this, note that the loop intersects the surface an even number of times, and consider
the contribution to overall parity from two successive interactions. If the length of the
loop between the crossings is even, then both intersections make the same contribution
(both 0 or both 1) to N, and the combined contribution modulo 2 is unchanged when
dimers on the loop are flipped; alternatively, if the length between crossings is odd,
the two interactions make opposite contributions (one 0 and the other 1) to N, and
their individual contributions swap when dimers are flipped.

It is known from exact solutions for two-dimensional lattices using Pfaffians [33],
and from Monte Carlo simulations in three dimensions [31], that dimer-dimer correla-
tions generically decay exponentially with separation for close-packed dimer coverings
of non-bipartite lattices.

1.3.4 Excitations

Vortices in the height representation can arise from defects of more than one type
in the dimer covering. One of these is obvious from the mapping between triangular
lattice spin configurations and hexagonal lattice dimer configurations: a triangle in
which three spins have the same orientation maps to a site of the hexagonal lattice at
which three dimers meet. This excitation acts as a source or sink of the flux we have
introduced, depending on which sublattice the site belongs to.

Fig. 1.10 Monomers in the hexagonal lattice dimer model. Left: dimer replaced with two
monomers. Right: separation of the monomers by dimer flips.

An alternative type of height vortex, which is of interest for the dimer model, is
one in which a dimer is removed, or equivalently, replaced by two monomers, as in
Fig. 1.10. The two monomers can be separated by subsequent dimer moves, one always
remaining on the A-sublattice and the other on the B-sublattice. The two monomers
are represented by a vortex anti-vortex pair in the height model. From the arguments
leading to Eq. (1.23), we see that such a pair will be subject to an attractive entropic
potential that increases logarithmically with separation.

This entropic potential is a natural consequence of the fact that a monomer acts as
a source for flux B (r) if it is on one sublattice, and as a sink if it is on the other sublat-
tice, and the logarithmic dependence on distance is characteristic of the Coulomb in-
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teraction in two dimensions. Similarly, the entropic potential V(r) in three dimensions
between a pair of monomers on opposite sublattices at separation r can be evaluated
straightforwardly within the continuum description of Eq. (1.24). The presence of the
excitations results in an additional contribution to g(r) Let ésource be the field con-
figuration that minimises #H in the presence of the pair, and write B (r) = Bource +0B.
Since H is quadratic in B (r), integration over fluctuations 8B yields a weight that is
unaffected by the presence or separation of the pair. We can therefore determine V' (r)
simply from gsourcea and by the usual arguments of electrostatics we find

K
Vir)= P (1.30)
Since the entropic cost of separating the pair to infinity is bounded, monomer excita-
tions in a Coulomb phase in three dimensions are deconfined.

In a dimer model that has long-range order, monomers are subject to a potential
that grows much more rapidly with separation. For example, in two dimensions the
coarse-grained height field steps between different pinned values along a line joining
the vortex anti-vortex pair. This generates an interaction that is linear in separation,
and the same result holds in three dimensions.

On non-bipartite lattices in both two and three dimensions the entropic interaction
potential between a pair of monomers approaches a finite limiting value exponentially
fast with increasing separation, provided the dimer coverings are disordered. The de-
confinement of monomers is an important property distinguishing Zs from U(1) phases
in two dimensions.

It is characteristic of topologically ordered systems that transitions between ground
states of a system on a torus can be engineered by a sequence of steps, consisting of
the generation of a pair of excitations, followed by transport of one excitation around
the torus, and ending with recombination. For a dimer model the first of these steps is
the replacement of a dimer by a pair of monomers. The flux quantum number for the
dimer covering is changed if one of these monomers is transported around the torus
by flipping dimers, until the two monomers are again adjacent and can be replaced
with a dimer.

1.4 Spin ice

The spin-ice materials Ho TioO7 and Dy5TisO7 provide fascinating realisations of the
Ising antiferromagnet on the pyrochlore lattice, in which both the nearest-neighbour
and the long-range dipolar contributions to spin interactions make very distinctive
contributions to the physical behaviour [34]. In this section we give an overview of the
resulting physics, making use of some of the general ideas developed in our discussion
of Coulomb phases.

1.4.1 Materials

Isolated Ho** and Dy3T ions have high angular momentum (J = 8 and J = 15/2
respectively) and large magnetic moments (10up in both cases). In spin-ice materials
the effect of the electrostatic environment of the rare earth ions is to split the 2J + 1
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degenerate states of the free ions into crystal field levels. Approximating the crystal
field Hamiltonian by —D(.J,)?, one has for positive D a ground state doublet M; =
+.J. Since excited crystal field levels are several hundred kelvin higher in energy and
the scale for interactions between spins is only a few kelvin, the moments can be
represented by Ising pseudospins S;. The easy axis at given a site is the local (111)
direction joining the centres of the two tetrahedra that share it, and so moments
are directed either into or out of tetrahedra, as shown in Fig. 1.11. The centres of
tetrahedra of the pyrochlore lattice lie on a diamond lattice, which is bipartite. We
take the convention that S; = +1 represents a spin directed out of a tetrahedron on
the A-sublattice.

\/
A

Fig. 1.11 Magnetic moments at sites of a pyrochlore lattice, orientated along local (111) axes
in a ‘two-in two-out’ state. In later figures, for ease of drawing, we represent the tetrahedron
in the flattened way shown on the right.

Strikingly, frustration arises from the combination of this local easy-axis anisotropy
with ferromagnetic nearest-neighbour coupling (Acw ~ +1.9K and +0.5K for the Ho
and Dy compounds, respectively), and energy is minimised for the two-in two-out
states of the type illustrated in Fig. 1.11 [35]. The term spin ice is chosen because
these spin arrangements mimic the proton positions in water-ice. As the values of
Ocw are relatively small and the magnetic moments are large, long-range dipolar
interactions are important in addition to the nearest neighbour coupling; we discuss
their consequences in Sec. 1.4.3, but first examine the physics of the nearest-neighbour
model.

1.4.2 Coulomb phase correlations

We would like to develop a description of ground states of the nearest-neighbour model
for spin ice that is analogous to the height representation for the triangular lattice Ising
antiferromagnet, and amenable to coarse-graining. The approach [24,36] parallels the
one introduced for three-dimensional dimer models in Sec. 1.3

In order to describe in a general way the ideas that are involved, it is useful to
introduce some terminology. For a given system of corner-sharing frustrated clusters,
we will be concerned with two types of lattice. One is simply the magnetic lattice on
which the moments reside, also known as the medial lattice, and we denote this by L.
The other is the cluster (or simplex) lattice, also known as the pre-medial or parent
lattice, which we denote by B. The sites of L lie at the midpoints of the links of B,
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and in the notation of graph theory, £ is the line graph associated with the graph B5.
For spin ice, L is the pyrochlore lattice and B is the diamond lattice. Alternatively, if
we take £ to be the kagome lattice, then B is the hexagonal lattice.

A key requirement in the following is that B should be a bipartite lattice. We can
then orient the links of B, say from sites of sublattice A to sites of sublattice B. Let
é; be the unit vector in this direction on link ¢, and note that i also labels a site of L.

The central idea is to introduce a vector field B, defined on the links of B, that is
a representation of a configuration of Ising spins {S;} on £, and given by the relation

B; = Sié; . (1.31)

The field B is a useful construction because the ground-state condition for spin ice —
that two spins are directed into each tetrahedron, and two are directed out — translates
into the condition that B has zero lattice divergence at each node of B. The field B is
therefore an emergent gauge field.

2 /WA 2

/

Fig. 1.12 Ground-state configurations on the two-dimensional pyrochlore lattice. Left: a
state containing short flippable loops of spins. Centre: the state obtained from this by flipping
four spins on the marked loop. Right: a state with no flippable spins and maximal flux B.

The next step is to conjecture a probability distribution for a coarse-grained version
of B. Some ground states contain short loops of flippable spins: closed loops on the B
lattice, around which all spins are directed in the same sense. Further ground states
with a similar coarse-grained B are obtained by reversing all the spins on one of these
loops, and so entropy favours states with a high density of short loops, as illustrated
in Fig. 1.12 using a two-dimensional version of the pyrochlore lattice. These consider-
ations suggest that states in which B is large have lower entropy. This motivates for
the probability distribution the form

P[B(r)] = Z e ™ (1.32)

with X
M= /d3r|§(r)|2, (1.33)

where g(r) is a continuum field, subject to the ground-state constraint V - B = 0,
just as in our earlier discussion of Coulomb phases in dimer models. Indeed, spin ice
ground states can be represented directly by dimer coverings on the diamond lattice
with two dimers touching every site, simply by using dimers on B to represent spins
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S; = 41 on L. Ground state spin correlations in spin ice therefore have the dipolar
form given in Eq. (1.29).

(a) (b)

Fig. 1.13 Illustration of the origin of dipolar correlations in spin ice. Spins at 0 and r are
correlated if a flux line of the emergent field B (r) passes through both sites. The orientations
of the flux line at the two sites depends on the direction of their spatial separation, so that
for (a) (SoSr) > 0 and for (b) (SpSy) < 0.

The angular dependence of this correlator means that a pair of well-separated spins
on sites of the same sublattice of £ (and hence with the same orientation for é at both
sites) are positively correlated if their separation vector r is in the direction of é,
but most likely to be anti-aligned if r is perpendicular to é. Such behaviour can be
understood by considering the geometry of flux lines of the emergent gauge field B (r).
A spin configuration in which oy = +1 is one with a flux line passing through the origin
in the direction €, and this flux line must close on itself since the field is divergenceless.
The spin o, is correlated with oy only in those configurations in which the same flux
line passes through r, and the most likely orientation of this flux line at r depends on
the relative directions of r and é, as shown in Fig. 1.13. The reciprocal space signature,
Eq. (1.28), of these correlations consists of so-called pinch-point structures, sharp but
without divergences, observed in elastic neutron diffraction [9].

It is interesting to connect the results obtained from a continuum treatment of the
emergent gauge field to those arising from the self-consistent Gaussian approximation
of Section 1.2.1. Adopting the sublattice labels and axis orientations shown in Fig. 1.14,
the net Ising moment M and flux components B,, B, and B, arising from a spin
configuration S7, Sa, S3 and Sy on the four sublattices are [37]

M 11 1 1 S1
B, | 1|11 -1-1 Sy
B, | 2|1-11 1] |Ss]|" (1.34)
B, 1-1-11 Sa

The statistical weight of fluctuations is determined within the self-consistent Gaussian
approximation by their energy and by a Lagrange multiplier A. From Eq. 1.1, the
energy per unit cell of a configuration is %M 2. Moreover, the net Ising moment M is
simply the lattice version of V- B. In continuum notation, Eq. 1.15 therefore amounts
to a Boltzmann factor e~ with

Hz/dgr{;|§(r)|2+%]M2}. (1.35)
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In this way we see that A sets the value of the stiffness K for fluctuations of B(r). We
also recover the condition V - B(r) = 0 in the low-temperature limit 8J — oo.

2

z
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X

Fig. 1.14 Choice of axes and sublattice labels for the pyrochlore lattice.

1.4.3 Monopoles

Some beautiful physics becomes apparent when we examine configurations of spin ice
that do not obey the two-in two-out rule for ground states of the model with nearest
neighbour interactions [38]. Consider the configuration obtained from a ground state by
reversing a single spin. As illustrated in Fig. 1.15, two separate elementary excitations
are obtained from it through further spin reversals. Because, like vortex excitations
in the triangular lattice Ising antiferromagnet, these elementary excitations are not
produced singly by local spin flips, they are said to be fractionalised. Moreover, since
one member of the pair is a source for the emergent gauge flux, and the other a sink,
they form a monopole anti-monopole pair.

L %

N N
7 7 7

Fig. 1.15 Generation of a monopole anti-monopole pair from ground state of two-dimen-
sional spin ice, and their separation, by successive spin flips.

The energy of a monopole anti-monopole pair arising from exchange interactions
is independent of their separation in a nearest neighbour model. There is, however,
an entropic interaction between the pair, since the number of ground states available
to the background spins depends on the separation r of the excitations. The entropic
potential V(r), as for monomers in the Coulomb phase of a three-dimensional dimer
model on a bipartite lattice, is given by Eq. (1.30). Likewise, since the entropic cost
of separating the pair to infinity is bounded, monopole excitations are deconfined.
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1.4.4 Dipolar interactions

Our treatment of spin ice to this point has omitted the long-range part of dipolar
interactions. Clearly, its inclusion will lift the high degeneracy of ground states of the
nearest neighbour model, and one might expect that it would simply set an unwelcome
limit on the physics we have discussed so far. Rather than being just a bug, however,
dipolar interactions turn out to add a spectacular feature to spin-ice physics [38].

A very convenient framework for thinking about dipolar effects is provided by an
approximation known as the dumbbell model. Here, in the first instance, magnetic
dipoles p of atomic size are replaced by ‘dumbbells’ of positive and negative magnetic
charge /2 at a separation a equal to the distance between the centres of adjacent
tetrahedra of the lattice. Setting the dipole moment of the dumbbell equal to the
microscopic moment, the leading contribution to long-range interactions is captured
exactly. The power of this description stems from the fact that, for all ground states of
the nearest-neighbour model, the positive and negative magnetic charges at the centre
of each tetrahedron cancel. In turn, this fact is a demonstration that the leading
contribution to the energy from dipolar interactions is the same for all these states.
Subleading terms follow from the multipole expansion and fall off with distance as
r~?. The estimated ordering temperature of spin-ice materials, T, < 0.2 0cw, is rather
low for that reason [39]. Such ordering is not observed under ordinary experimental
conditions because spin dynamics is very slow at low temperature.

Turning to monopole excitations, the dumbbell model serves to expose a striking
consequence of dipolar couplings, since dumbbell charges fail to cancel in tetrahedra
that contain these quasiparticles. As a result, a well-separated monopole anti-monopole
pair is subject to a Coulomb interaction

_ 110Q°
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Ur) = (1.36)

of magnetic origin. The charge @ is related to the atomic dipole moment and the
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Fig. 1.16 The dumbbell approximation. Dipoles are replaced with a dumbbell of opposite
charges at finite separation, as shown at the top. If this separation is chosen to be the distance
between tetrahedron centres, then two-in two-out tetrahedra are charge neutral (bottom left)
but one-in three-out tetrahedra have net charge (bottom right).

lattice spacing by @ = 2u/a, and the monopole chemical potential is fixed by the
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nearest-neighbour contributions to spin interactions. Note that while the entropic and
dipolar contributions to monopole interactions (Eqns. 1.30 and 1.36) have the same
dependence of separation, the entropic one makes a temperature-independent contri-
bution to Boltzmann weights and so the dipolar one is dominant at low temperature.
The magnetic Coulomb interaction between monopoles is a remarkable example of an
emergent longer-range interaction (1/7) arising from shorter-range (1/r%) microscopic
interactions. It appears because of the interplay between these microscopic interactions
and the correlations of the Coulomb phase, and it stands in contrast to the familiar
situation (for example, in a plasma) in which correlations serve to screen long-range
microscopic interactions, leaving only a short-range effective potential.

A second, and much more conventional, consequence of atomic dipole moments
is that spins couple to an external magnetic field. To appreciate the form of this
coupling, recall that moments are aligned along local crystal field axes, and that these
are differently orientated on each of the four sublattices, as shown in Fig. 1.11. The
Zeeman contribution to the Hamiltonian in the presence of a magnetic flux density B
is therefore

My =—p» [B-&]S;, (1.37)

and so the strength of coupling to spins on different sublattices depends on the orien-
tation of H relative to the crystal axes.

Fig. 1.17 Spin configurations favoured by a [111] field: magnetic charges +@Q are induced in
tetrahedra on opposite sublattices.

This sublattice-dependent Zeeman coupling can be exploited to control monopole
density in a way that provides rather direct evidence for magnetic Coulomb interac-
tions. Specifically, a field directed along the [111] axis acts as a staggered chemical
potential for monopoles, favouring monopoles of charge ) in the tetrahedral on one
sublattice of B and charge —@Q on the other sublattice, as indicated in Fig. 1.17. In
this way, by varying field strength, one can drive a transition between low and high
monopole density phases. Experimentally, this is observed to be first order. Theory for
a charged system, and simulations including magnetic dipolar interactions reproduce
this first-order transition, in contrast to theory and simulations for models with only
nearest-neighbour interactions, where the transition is continuous [38].
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1.5 Quantum spin liquids

We now turn to the quantum physics of frustrated magnets, where frustration is in-
teresting particularly because it provides a mechanism that suppresses Néel order and
promotes alternative, quantum-disordered phases.

1.5.1 Introduction

To understand that destruction of conventional order is likely in frustrated magnets,
we can examine the reduction of ordered moments in the Néel state by zero-point fluc-
tuations. Within the framework of harmonic spinwave theory, we start from a classical
ground state for a spin model and choose axes at each site that have Z oriented along the
local ground-state spin direction. Using the Holstein-Primakoff transformation, spin
operators are expressed in terms of bosonic ones via the relation S? = S — ala,. Fluc-
tuations lower the ground-state moment (SZ) = S — AS by an amount AS = (afa,)
that can be expressed as an average over contributions from each mode. The schematic
form (details depend on the system) in terms of spinwave frequencies wy and exchange
interaction J is [40]

AS~Z [ == (1.38)

where  is the Brillouin zone (BZ) volume. As we have seen in Sec. 1.1.2, frustration
promotes macroscopic classical ground-state degeneracy and branches of soft modes.
Here we find that these modes make divergent contributions to AS, destabilising long
range order.

Is the resulting state a quantum spin liquid? A necessary requirement is that (i) the
ground state leaves all symmetries of the Hamiltonian unbroken, and the absence of
Néel order is one aspect of this. To appreciate that we should demand more, consider
as an example a bi-layer, square-lattice spin-half Heisenberg antiferromagnet, having
nearest neighbour exchange .J within layers and J’ between layers. This model has two
phases: the ground state is Néel ordered for J’ < .J, but consists of interlayer singlets
for J* > J. Although the large J'/J state breaks no symmetries, it is ‘ordinary’
rather than ‘exotic’, in the sense that it is continuously connected to a band insulator.
That is to say, there is a path in the space of Hamiltonians that connects this phase
of the spin model to a tight-binding model without interactions, that has one filled
band (symmetric under layer interchange) and one empty band (antisymmetric under
interchange).

To exclude such ordinary possibilities, we make require in addition that a quantum
spin liquid (¢7) has half odd-integer spin per unit cell. The combination of (7) and (%)
together imply for a large class of models that a system with a gapped ground state
has topological order, as we now discuss.

1.5.2 Lieb-Schultz-Mattis theorem

Some strong constraints on the nature of ground states and excitations in spin models
that have half odd-integer spin per site and (at least) U(1) symmetry are revealed
by the Lieb-Schultz-Mattis theorem [41]. It was originally proved for one-dimensional
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models, but has subsequently been applied to quasi-one dimensional and higher di-
mensional systems [42,43]. The theorem shows for a chain of length L that the energy
gap between the ground and first excited states vanishes as L — oo. We know of
three distinct ways in which this can happen. Two of them are conventional. First, if
the model spontaneously breaks a symmetry, the ground state belongs to a low-lying
multiplet, and splittings within the multiplet vanish as L diverges. An example is a
state in which the size of the unit cell is doubled spontaneously by spin dimerisa-
tion. Second, if the model has a branch of gapless excitations, the lowest excitation
energy decreases as a power of system size. This is the case for spinon excitations in
the spin-half Heisenberg chain. The third, unconventional possibility concerns systems
that do not show symmetry breaking, and in which excitations that can be created
by local operators are gapped. For these, the implication of the theorem is that the
ground state belongs to a low-lying multiplet that does not originate from symmetry
breaking. Instead, it has its origin in topological order.

We will sketch the proof as it applies to the spin-half XXZ chain, and then discuss
more general implications. Consider the Hamiltonian

1
1= s {5800 + Sustal + Asista | (1.39)

for a chain of L sites with periodic boundary conditions and L even. Suppose the
ground state |0) is unique (if it is degenerate, there is nothing to prove, since the gap
is zero) and denote its energy by Fy. We construct a second state |¢)) = U|0) from it
by acting with an operator

L
U =exp (27Ti Z ZS§> (1.40)
n=1

that generates a long-wavelength twist of spin configurations about the z-axis. We will
show that (¢|0) = 0, and will use (¢|(H — Ep)|¢) to obtain a variational bound on the
separation in energy between the ground and first excited states of H.

To show orthogonality of |0) and |¢)), consider the effect of translations on |0) and
on [¢h). Let the operator T effect translation by one lattice spacing. We have T |0) = |0)
since the ground state is unique. On the other hand

TUT ' =Ue “F TS 2mi5T (1.41)

The factor e~ Z* Zn i = +1 if > -n Sz =0 (and there is ground-state degeneracy if
>, S # 0), but for half-odd-integer spins the factor €251 = —1. Hence T|y) = —[¢)),
and therefore (|0) = 0.
In order to evaluate (¢|(H — Ep)|v), we first examine how U transforms a single
spin operator. We have
e 05§09 — ¢85+ and so UTS;:S;HU = 2/l gt il - (1.42)

n

From this we find
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(V[(H = Eo)|lv) = —%[1 —cos(2m/L)] ) (7 S,s1 + Sy i) - (1.43)

n

Since the factor [1—cos(2m/L)] decreases as 1/L? while Y, [(S} S, 1+, S;F )| < 2L,
the energy gap separating Ey from the next eigenstate vanishes at least as fast as 1/L,
which is the result we seek.

These ideas can most simply be extended to higher dimensions by considering a
system on a strip, with the width M chosen to be an odd integer so that the spin
per unit cell of the strip remains half odd-integer [42]. The bound on the energy gap
implied by Eq. (1.43) is then O(M/L), which again vanishes provided we take the
thermodynamic limit in an anisotropic fashion, a restriction not required in a more
sophisticated approach [43].

The possibility of asymptotic degeneracy without symmetry breaking or gapless
excitations is very striking. One route to understanding how it can arise is provided
by quantum dimer models.

1.5.3 Quantum dimer models

RVB picture. In order to discuss spin liquid states we need a suitable language. It
should provide an alternative to the picture we have of Néel order, which starts from
a product wavefunction based on the classical ground state. Anderson’s resonating
valence bond (RVB) state [1,44] offers this language: we describe the spin liquid wave-
function using a basis of short-range singlets. In one such basis state, each spin is
paired with another nearby spin to form a singlet, with different basis states arising
from different pairings. This idea is depicted in Fig. 1.18.

o) = 7L+ [T 1) -

Fig. 1.18 Schematic illustration of the RVB state as a superposition of short-range singlets.

Efforts to develop this picture directly face many difficult issues and questions [32].
Different basis states are not orthogonal, and it is not immediately apparent whether
the basis is complete in the space of total singlets. Equally, one might ask what the
prescription should be for choosing expansion coefficients, and how the Néel state can

be written in this basis.
y
=ty | |

Fig. 1.19 Resonance for quantum dimer model on square lattice.

Quantum dimer models. Quantum dimer models [32] short-circuit many of these
problems by defining a quantum-mechanical problem on a Hilbert space that has the
correlations of a classical Coulomb phase built in from the start. The key idea is simply
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to define an orthonormal basis {|C)} set to be the close-packed dimer coverings C of
a given lattice, so that an arbitrary state in this space has the form [1)) = 3", A¢|C).
The other ingredient is a choice of Hamiltonian. In general it will have ‘potential’
terms, which are diagonal in the dimer covering basis, and ‘kinetic’ terms, which are
off-diagonal. The form proposed for the square lattice by Rokhsar and Kivelson [32] is

H=> A=t =)+ =1+ oL+ =) (=) (1.44)

The notation used is intuitive although compact. Unpacking it: the sum runs over
all elementary plaquettes of the lattice and the symbol |=)(=| denotes a projection
operator onto states that have a horizontal pair of dimers in this plaquette. Similarly,
the symbol |=){||| represents an operator that converts a horizontal pair of dimers in
this plaquette to a vertical pair, and yields zero otherwise. It therefore produces the
dimer resonances shown in Fig. 1.19.

Extensions to different lattices are straightforward. For example, on the triangular
lattice one allows resonances of pairs of dimers on four-site plaquettes of three types,
as shown in Fig. 1.20(a), while on the honeycomb lattice three-dimer resonances are
required [Fig. 1.20(b)]. In general, one wants to include in the kinetic energy a set of
resonances that is sufficient to connect all dimer configurations within a given U(1) or
Z5 sector, but otherwise as local as possible.

CEAt TN G D

Fig. 1.20 Resonances for quantum dimer models on (a) triangular and (b) honeycomb lat-
tices.

The nature of the ground state of the quantum dimer model Hamiltonian (1.44)
depends on the values of the parameters v and t. We will discuss only ¢ > 0, so that
the kinetic energy favours a nodeless wavefunction. A special role is played by the
Rokhsar-Kivelson (RK) point in parameter space, v = ¢, because here the ground
state wavefunction is given exactly by an equal-amplitude superposition |G) of all
dimer coverings within a given sector. To see this, note that the Hamiltonian at the

RK point has a form
Hrx = tz (I =1=) Il = (=1) (1.45)

which is a sum of projectors with a positive coefficient. Its eigenvalues are therefore
non-negative. Moreover |G) is annihilated by the projection operators, and so is an
eigenstate with energy zero. It is unique by the Perron-Frobenius theorem, provided
the kinetic term is ergodic within the sector.

Correlations. Knowledge of the ground state wavefunction enables us to evaluate
equal-time correlation functions. In particular, the ground state expectation value of
an observable that is diagonal in the dimer basis is given by an average over dimer
coverings. From this we can deduce at once that dimer correlations at the RK point
of a quantum dimer model take the power-law form characteristic of a Coulomb phase
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[see Eqns. (1.26) and (1.29) for two and three dimensions, respectively] on bipartite
lattices, and are exponentially decaying on non-bipartite lattices.

We can also consider the quantum dimer model in the presence of a pair of static
monomers. At the RK point, equal amplitude superpositions of dimer coverings con-
tinue to define zero energy eigenfunctions, and so the ground state energy is indepen-
dent of the separation between monomers. From this one concludes that monomers
are deconfined in the ground state. Consider for comparison the behaviour at infinite
temperature. In this limit (as discussed in Sec. 1.3) there is an entropic contribution
to the monomer-monomer potential. It is weakly (logarithmically) divergent at large
separations in two dimensions on bipartite lattices, giving confinement in this case. In
other cases monomers are deconfined: the potential has the Coulomb form on three-
dimensional bipartite lattices, and approaches its limiting value exponentially fast with
separation on non-bipartite lattices in both two and three dimensions.

Phase diagram. Moving away from the solvable RK point, we would like to under-
stand the ground-state phase diagrams of quantum dimer models on various lattices
as a function of the dimensionless coupling v/t [32, 45, 46]. The behaviour in some
regimes and limits is clear from simple arguments.

First, for v > ¢ we can write H in terms of the Hamiltonian Hgrk at the RK point
and a non-negative remainder, as

Ho=Hrx+ -1 Y_{Il+ =)=} (1.46)

The so-called staggered state shown in Fig. 1.21(a) is annihilated by both terms in this
Hamiltonian, and is hence the ground state for all v > ¢. In terms of the description of
Coulomb phases on bipartite lattices, this is the state with maximal flux. It also has
analogues on non-bipartite lattices: see Fig. 1.21(d).

(@) (b) (d)
Fig. 1.21 Some possible ordered phases for quantum dimer models: (a) staggered, (b) colum-
nar and (c) plaquette states on the square lattice; (d) staggered state on the triangular lattice.

In the opposite limit, v — —oo, the ground state is a columnar state, maximising
the number of flippable plaquettes, as illustrated in Fig. 1.21(b). Further possibilities
at intermediate values of v/t include plaquette states, shown schematically for the
square lattice in Fig. 1.21(c): in these states dimers resonate independently on different
plaquettes between horizontal and vertical pairs.

Note that all of the states shown in Fig. 1.21 break spatial symmetries and are
degenerate for that reason. By contrast, the ground state at the RK point leaves
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spatial symmetries intact; its degeneracy arises topologically, from the existence of
different sectors, labelled by U(1) or Zs quantum numbers according to the lattice
type. The fact that they support a set of distinct ground states labelled by topological
fluxes is a crucial feature of quantum dimer models, inherited from their classical
counterparts. It illustrates how the degeneracy demanded by the Lieb-Schulz-Mattis
theorem can arise without local symmetry breaking.

A full determination of the phase diagram requires Monte Carlo calculations. Here,
quantum dimer models have a tremendous advantage over most spin Hamiltonians
for frustrated systems, because they avoid the so-called sign problem and can be
simulated efficiently using worm algorithms. The resulting phase diagrams are shown
schematically in Fig. 1.22.

Some aspects of the phase diagram are generic, but others depend on spatial di-
mension and on whether or not the lattice is bipartite. Properties precisely at the RK
point are known in all cases by reference to the corresponding classical dimer problem:
dimers are disordered, with correlations that decay exponentially on non-bipartite lat-
tices and as a power law on bipartite lattices. Moreover, the RK point lies at a phase
boundary, since the staggered state is the ground state for all v > ¢. Crucial differences
in behaviour appear on the other side of the RK point (v < t). A simple first step
to rationalising these differences is to use classical, high-temperature properties as a
basis for guessing the nature of the quantum ground state. Specifically, we know that
the high-temperature, entropic interaction between monomers yields confinement on
bipartite lattices in two dimensions, but not in three dimensions or on non-bipartite
lattices. Correspondingly, the ground state of quantum dimer models is generically or-
dered on bipartite lattices in two dimensions. Deconfinement of monomers at the RK
point on the square lattice must therefore be seen as a special feature of the transition
between one ordered phase (the plaquette phase for v < ¢) and another (the staggered
phase for v > t). In contrast, deconfinement of monomers at the RK point on the
triangular or diamond lattices is a reflection of behaviour throughout a dimer liquid
phase that extends from the RK point to smaller values of v/t. As we have seen in
Sec. 1.3, topological order in this liquid phase is characterised respectively by Zs and
U(1) quantum numbers, which distinguish different sectors of the dimer configuration
space, and therefore different quantum ground states.

RK pt
(a) columnar plaguette l staggered - Vit
(b) columnar | 42 RVB | staggered , v/t
(C) columnar ] U(1) RVB I staggered R v/t
1

Fig. 1.22 Schematic phase diagrams for the quantum dimer model on (a) square, (b) trian-
gular and (c) diamond lattices.
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A summary of the main features of the phase diagrams for quantum dimers models
shown in Fig. 1.22 is that deconfined phases are found: (¢) in both two and three spatial
dimensions for Zs models, which arise on non-bipartite lattices, and (i) only in three
spatial dimensions in U(1) models, which arise on bipartite lattices [45,46]. These
are general properties of lattice gauge theories: whereas Zy theories support confined
and deconfined phases in 2+1 and 3+1 dimensions, compact U(1) theories are known
always to be confining in 241 dimensions, but to have both types of phase in 3+1
dimensions [47].

Excitations. Three types of excitation are important in quantum dimer models. Of
these, monomers (mentioned already) involve a relaxation of the dimer covering con-
straint, while the others — visions and emergent photons — are excited states of complete
dimer coverings, which are respectively point-like and wave-like.

The energy cost of introducing monomers is free parameter of the quantum dimer
model, not fixed by the parameters v and ¢. It is natural, however, to regard them as
gapped excitations, arising in pairs from breaking dimers. Viewing the dimer as a spin
singlet, the monomer carries spin one-half and so is also referred to as a spinon. An
isolated monomer in a dimer covering of a bipartite lattice is either a source or sink of
U(1) flux, depending on which sublattice it occupies, and in that sense is a monopole.
As we have discussed in Sec. 1.3.4, transitions between ground states in different
topological sectors can be produced by generation of a pair of quasiparticles, followed
by transport of one quasiparticle around the torus, and ending with recombination.
The relevant quasiparticles here are monomer excitations.

Variational wavefunctions offer a language in which to discuss excitations of Hrk
within the space of close-packed dimer coverings. At the RK point we know that the
ground state wavefunction has equal amplitude for all coverings within a given sector.
An excited state wavefunction must have a phase that varies with dimer covering or
it would not be orthogonal to this ground state.

The vison [48] is a vortex excitation of a two-dimensional system. It can be repre-
sented at the RK point by a variational wavefunction of the form

|¢Vison> = Z(_l)nc |C> . (147)

C

Here n¢ is the number of dimers in the configuration C that cross a line on the dual
lattice which extends from the centre of the plaquette on which the excitation is based
to the system boundary (or, for a system on a torus, to the centre of another vison),
as illustrated in Fig. 1.23. In order for a wavefunction of this form to be reasonable, its
physical properties should depend only on the line’s endpoints, and not on the line’s
path: it is a simple exercise to check that this is true. To understand the significance
of the form of this wavefunction, consider two configurations, C and C’, which are
related by flipping dimers around a single loop. The dimer flip changes the sign of
(—1)"c if the loop encloses the vison, but otherwise has no effect. This suggests several
conclusions. First, far from the vison, the state |iyison) is very similar to |G), since
many different components of the wavefunction, related by dimer flips around loops
that do not enclose the vison, contribute all with the same phase to |tyison), just as
they do to |G). Second, |t)yison) and |G) are orthogonal, since the average of (—1)"¢
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AV, VAV
"VAA

Fig. 1.23 Vison excitation.

over configurations is zero. Third, close to the vison, the states |tyison) and |G) are
quite different, and so we expect a finite energy gap for vison creation.

An emergent photon is an excitation involving density waves of the dimer orienta-
tions. It is a gapless excitation of a U(1) quantum dimer liquid, and so of interest at
the RK point on bipartite lattices in 2+1 and 341 dimensions, and also away from the
RK point in the U(1) phase in 3+1 dimensions. At the RK point itself, discussion of a
trial wavefunction is again a very useful approach [32]. The excitation is characterised
by a polarisation 7 and a wavevector q. To specify the trial wavefunction we use the
dimer number operator o;(r). Its Fourier transform is

os(q) = Y e o (r) (1.48)

and the trial wavefunction we consider is

|¢photon> =0z (q)|g> . (149)

Note that (G|¢photon) = 0 for |q| # 0 since |G) and |¥photon) = 0 are both eigenstates of
translation, but with different eigenvalues. In addition, for small |q| the state |¢pnoton)
is locally similar to |G), in the sense that dimer flips around short loops induce only
small changes in the phases of its expansion coefficients A¢.

Excitation energies £(q) in the quantum dimer model can be determined varia-
tionally using this trial wavefunction, taking inspiration from Feynman’s treatment of
phonon modes in Bose condensates [49]. We start from

£(q) < (GIoH DHro:(@I0)  (GHrxld) _ f(a) (150)

(Glol(a)o.(a)|g) @G1g) 2s(a)’

where

f(a) = (Gllol(a), Hrk, 0. (@))G) and s(q) = (G|lol(a)o(a)|G) .

From Eq. (1.50) we see that excitations are gapless if there are wavevectors q at
which f(q) vanishes and s(q) remains finite or approaches zero more slowly. In turn,
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f(@) = 0 if [Hrk,o0+(q)] = 0, and for the latter to hold we require both of the
two dimer configurations shown in Fig. 1.19 to make the same contribution to o+(q).
Setting 7 = & for definiteness, this is the case in two dimensions if ¢, = 7, or in three
dimensions if ¢, = ¢, = 7. Writing q = (7,7) + k or q = (7,7, 7m) + k, one finds
f(q) o< k7 or f(q) o< k2 + k2, respectively. It remains to compute s(q), which is a
correlator for classical dimer coverings and can be evaluated using the treatment of
Coulomb phases established in Sec. 1.3. As dimer occupancy is represented by flux,
we require the flux correlator; and because the mapping between dimers and fluxes
uses an alternating orientation convention on links, long wavelength flux correlations

reflect dimer correlations near the Brillouin zone corner. From the relation

(Gllol(@)a,(a)G) o< (B*(~k)B* (k)) (1.51)

one finds s(q) o k7 /k? in two dimensions, and s(q) o (k2 4 k2)/k® in three. This
yields the important result
£(q) < ck?, (1.52)

with ¢ a numerical constant, showing that the quantum dimer model has gapless
excitations at the RK point.

We shall see that the quadratic dispersion shown in Eq. (1.52) reflects true be-
haviour, rather than simply providing an upper bound, but it is specific to the RK
point and is replaced by a linear dispersion within the U(1) phase in 341 dimensions.
To discuss the relevant physics, we consider how to extend the continuum description
of Coulomb phases from classical systems in D space dimensions to quantum systems
in D + 1 space-time dimensions.

Taking D = 2, we require an imaginary time action for a height field h(r,t) that
is compatible with Eq. (1.52). The quadratic expression

1
Srxc = 3 / {[8th(r,t)]2 + K? [V2h(r,t)]2} d%rdt (1.53)
is implied. It yields for the Fourier transform of the height field the correlator
(107209 pp—— (1.54)
’ (Kk?)? + w?
and hence an equal-time correlator
1
/dw (11l ) ox g (1.55)

of the form required for the classical height model that describes dimer correlations
in the ground state wavefunction at the RK point. This action is, however fine-tuned;
adding further symmetry-allowed terms, we arrive at

1 -

Soiq = 3 / {[@h(r,t)]2 + pa|Vh(r, t)|* + K? [Vzh(nt)]Q — g cos 27rh(r,t)} d?rdt.
We can identify the stiffness po with the parameter combination 1—v/¢ in the quantum
dimer model. At the RK point the stiffness vanishes, g is irrelevant under renormali-
sation, and we return to Eq. (1.53). On one side of the RK point, v > t, ps is negative,
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promoting a state with a large gradient |Vh(r,t)| in the height field: the staggered
phase. On the other side, v < ¢, positive py suppresses fluctuations of h(r,t) and
gcos 2mh(r,t) is relevant, producing a pinned phase. In this way we see that the RK
point for a bipartite lattice in 2+1 dimensions is an isolated critical point between two
conventional ordered phases.

Contrastingly, quantum dimer models on bipartite lattices in 3+1 dimensions
generically support a dimer liquid phase. Again we require an imaginary time action
compatible with Eq. (1.52), now expressed in terms of the vector potential /T(r,t).
Picking the Coulomb gauge V- /Y(r, t) = 0, an expansion in space and time derivatives
gives

Ssiq = %/{mﬁ(r,m? + pa|V x A(r, t)]2 + K%V x [V x /T(r,t)]\Z} d®rdt. (1.56)
Again we expect ps x 1 — v/t. At the RK point, with p, = 0, we recover a quadratic
dispersion relation for excitations, and equal-time correlations of the classical Coulomb
phase. On one side of the RK point, with v > t, negative p, drives the system into
a staggered phase, as in 241 dimensions. On the other side, however, with v < t, by
introducing a scalar potential ®(r,¢) and writing E(r,t) = 0A(r,t) — VO(r,t), the
action can be expressed in the form [50,51]

1 . . L.
S = 3 / LB 0P + pal B, ) + K2¥ x Blr, 1)} d*ra (1.57)

familiar from quantum electrodynamics. Weak perturbations to this action allowed by
symmetry are irrelevant in the renormalisation-group sense. It describes a liquid phase
of the quantum dimer model and has linearly dispersing emergent photon excitations.
Monomers introduced into the dimer covering are monopole sources for the B field,
and the three-dimensional analogue of visons are sources for the E field.

1.6 Concluding remarks

The presentation has necessarily been a very selective one, chosen particularly to bring
out common strands in the treatment of frustration in classical models and in quantum
systems. It is reassuring to find that the main ideas also emerge from quite different
treatments.

Slave particles. A large and important class of theories follows from representing spins
in terms of particles subject to a local constraint. The constraint can be imposed using
a gauge field, which takes the same place in a description of a spin liquid as the gauge
fields that appear in dimer models. One starting point is Schwinger’s representation
of spin-S operators using two species of bosons, as [40]

1
5% = 5(b{b1 —blb,), St=0blb, and St =blb,, (1.58)
with [b, b;] = 0;; and the constraint b];b1 + bgb2 = 25. Fluctuations can be controlled

by generalising from SU(2) to SU(NN) [52], or on non-bipartite lattices to Sp(N) [53],
and from two to IV species of boson.
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Alternatively, we can recall the origin of local moments in itinerant fermions [54],
writing

Si= flaGaplis with fLfiy+ff =1, (1.59)

where {f] | fis} = 0ij0ap. The Heisenberg exchange term S; - S; then corresponds to
a four-fermion interaction, and a mean-field decoupling leads to a quadratic fermion
Hamiltonian of the form

Har =D {tij £+ (Aij £+ h.c.)} , (1.60)

13,0

where the hopping coefficients ¢;; and pairing amplitudes A;; serve as variational
coefficients. Denoting the ground state of Hyr by [Slater), components with double site
occupancy can be removed by Gutzwiller projection to yield a spin liquid wavefunction

1G) = [ (1 = nisnay) [Slater) (1.61)

7

Within this approach, depending on the phases of the hopping amplitudes, the fermions
move in a Zs, U(1) or SU(2) gauge field, and have a gapped, Dirac or metallic spectrum
—in decreasing order of stability. Spinons are represented by Bogoliubov quasiparticles,
and visions by flux excitations encoded in the phases of the hopping amplitudes [55].

Numerics. Unbiased numerical methods play a key role in this research field, and
often represent the only way to find out what phases are supported by a particu-
lar physical model; Refs. [56] and [57] provide recent reviews. In general, while exact
diagonalisation of the many-body Hamiltonian has the advantages of flexibility (for
example, providing an early identification of a gapped spin liquid [58]), alternative tech-
niques are important to avoid the difficulties stemming from the exponential growth
with system size of the Hilbert space dimension. These include the design of Hamil-
tonians that avoid Monte Carlo sign problems [57], and the use of the density matrix
renormalisation group and related methods to study quasi-one dimensional samples
(see, for example [60]). At the same time, new approaches to identifying exotic states
are increasingly important, such as the evaluation of entanglement entropy to probe
topological order [59].

1.6.1 Summary

Some common strands run through much of the physics that has been presented. Frus-
tration gives rise to classical degeneracy, and the correlations that are built onto these
classical degenerate states lead to the ideas of topological sectors and deconfined, frac-
tionalised excitations. By adding quantum dynamics to dimer models, two important
types of stable quantum liquid phase can be realised. One is a gapped Zs phase, sta-
ble in both two and three spatial dimensions, which has point-like excitations of two
types: spinons and visons. The other is the U(1) liquid, stable only in three spatial
dimensions, and having gapped electric and magnetic monopole excitations as well as
gapless emergent photon modes. Models realising Z, phases include, in two dimen-
sions, the triangular lattice quantum dimer model [45], the toric code [61], and the
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spin-half kagome lattice Heisenberg antiferromagnet [62]. Examples of U(1) liquids are
provided by the diamond lattice quantum dimer model [63] and by hard-core bosons
on the pyrochlore lattice [64].
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